Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37299880

RESUMEN

A simple, equipment-free, direct fluorometric method, employing paper-based analytical devices (PADs) as sensors, for the selective determination of quinine (QN) is described herein. The suggested analytical method exploits the fluorescence emission of QN without any chemical reaction after the appropriate pH adjustment with nitric acid, at room temperature, on the surface of a paper device with the application of a UV lamp at 365 nm. The devices crafted had a low cost and were manufactured with chromatographic paper and wax barriers, and the analytical protocol followed was extremely easy for the analyst and required no laboratory instrumentation. According to the methodology, the user must place the sample on the detection area of the paper and read with a smartphone the fluorescence emitted by the QN molecules. Many chemical parameters were optimized, and a study of interfering ions present in soft drink samples was carried out. Additionally, the chemical stability of these paper devices was considered in various maintenance conditions with good results. The detection limit calculated as 3.3 S/N was 3.6 mg L-1, and the precision of the method was satisfactory, being from 3.1% (intra-day) to 8.8% (inter-day). Soft drink samples were successfully analyzed and compared with a fluorescence method.


Asunto(s)
Papel , Quinina , Fluorometría , Bebidas Gaseosas , Factores de Tiempo
2.
Molecules ; 28(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37375386

RESUMEN

This study reports a new approach for the determination of copper ions in water samples that exploits the complexation reaction with diethyldithiocarbamate (DDTC) and uses widely available imaging devices (i.e., flatbed scanners or smartphones) as detectors. Specifically, the proposed approach is based on the ability of DDTC to bind to copper ions and form a stable Cu-DDTC complex with a distinctive yellow color detected with the camera of a smartphone in a 96-well plate. The color intensity of the formed complex is linearly proportional to the concentration of copper ions, resulting in its accurate colorimetric determination. The proposed analytical procedure for the determination of Cu2+ was easy to perform, rapid, and applicable with inexpensive and commercially available materials and reagents. Many parameters related to such an analytical determination were optimized, and a study of interfering ions present in the water samples was also carried out. Additionally, even low copper levels could be noticed by the naked eye. The assay performed was successfully applied to the determination of Cu2+ in river, tap, and bottled water samples with detection limits as low as 1.4 µM, good recoveries (89.0-109.6%), adequate reproducibility (0.6-6.1%), and high selectivity over other ions present in the water samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...