Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 58(5): 1215-1222, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30873990

RESUMEN

We report on a study of the ultraviolet (UV)-induced degradation on optical grade polytetrafluoroethylene (PTFE) and ceramic diffuser samples. Long-term UV exposure may significantly alter the reflectance and lead to an error in the calibration of optical instruments. A large integrating sphere was used to irradiate the samples for 334.7 days at an irradiance level of 194.9 W/m2. Samples were qualified and measured for reflectance factor, bidirectional reflectance distribution function, and fluorescence, before and after the exposure, and at 12-week intervals during the exposure. This study revealed significant differences between the aging behavior of ceramic and PTFE samples.

3.
Appl Opt ; 54(10): 3064-71, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25967222

RESUMEN

This paper describes the establishment and application of the 0/45 reflectance factor scale in the shortwave infrared (SWIR) from 1100 to 2500 nm. Design, characterization, and the demonstration of a four-stage, extended indium-gallium-arsenide radiometer to perform reflectance measurements in the SWIR have been previously discussed. Here, we focus on the incorporation of the radiometer into the national reference reflectometer, its validation through comparison measurements, and the uncertainty budget. Next, this capability is applied to the measurement of three different diffuser materials. The 0/45 spectral reflectance factors for these materials are reported and compared to their respective 6/di spectral reflectance factors.

4.
J Res Natl Inst Stand Technol ; 111(1): 9-30, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-27274914

RESUMEN

During the last 10 years, research in light-pipe radiation thermometry has significantly reduced the uncertainties for temperature measurements in semiconductor processing. The National Institute of Standards and Technology (NIST) has improved the calibration of lightpipe radiation thermometers (LPRTs), the characterization procedures for LPRTs, the in situ calibration of LPRTs using thin-film thermocouple (TFTC) test wafers, and the application of model-based corrections to improve LPRT spectral radiance temperatures. Collaboration with industry on implementing techniques and ideas established at NIST has led to improvements in temperature measurements in semiconductor processing. LPRTs have been successfully calibrated at NIST for rapid thermal processing (RTP) applications using a sodium heat-pipe blackbody between 700 °C and 900 °C with an uncertainty of about 0.3 °C (k = 1) traceable to the International Temperature Scale of 1990. Employing appropriate effective emissivity models, LPRTs have been used to determine the wafer temperature in the NIST RTP Test Bed with an uncertainty of 3.5 °C. Using a TFTC wafer for calibration, the LPRT can measure the wafer temperature in the NIST RTP Test Bed with an uncertainty of 2.3 °C. Collaborations with industry in characterizing and calibrating LPRTs will be summarized, and future directions for LPRT research will be discussed.

5.
J Res Natl Inst Stand Technol ; 102(5): 551-558, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-27805142

RESUMEN

Recent developments for a new spectral irradiance scale realization at the National Institute of Standards and Technology have been targeted to reduce the present relative expanded uncertainties of 0.67 % to 4.34 % (coverage factor of k = 2 and thus a 2 standard deviation estimate) in the spectral irradiance scale to 0.17 % for the range from 350 nm to 1100 nm. To accomplish this goal, a suite of filter radiometers calibrated using NIST's high accuracy cryogenic radiometer have been used to measure the temperature of a high-temperature black-body. A comparison of the filter radiometer calibrations with the spectral irradiance scale along with an evaluation of the black-body calibration technique have been performed. With the aid of a monochromator, the calibrated filter radiometers will then be utilized to calibrate primary and secondary spectral irradiance standard lamps at NIST.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA