Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(9): e29729, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38698985

RESUMEN

Stem cells exhibit pluripotency and self-renewal abilities. Adipose-derived mesenchymal stem cells can potentially be used to reconstruct various tissues. They possess significant versatility and alleviate various aging-related diseases. Unfortunately, aging leads to senescence, apoptosis, and a decline in regenerative capacity in adipose-derived mesenchymal stem cells. These changes necessitate a strategy to mitigate the effects of aging on stem cells. Ohwia caudata (O. caudata) has therapeutic effects against several illnesses. However, studies on whether O. caudata has therapeutic effects against aging are lacking. In this study, we aimed to identify potential therapeutic anti-aging effects in the crude aqueous extract of O. caudata on adipose-derived mesenchymal stem cells. Using 0.1 µM doxorubicin, we induced aging in human adipose-derived mesenchymal stem cells (hADMSCs) and evaluated whether various concentrations of O. caudata aqueous extract exhibit anti-aging effects on them. The O. caudata extract exhibited significant antioxidant effects on hADMSCs without any toxicity. Furthermore, after treatment with the O. caudata aqueous extract, the levels of mitochondrial superoxide, DNA double-strand breaks, and telomere shortening were reduced in the hADMSCs subjected to doxorubicin-induced aging. The extract also suppressed doxorubicin-induced aging by upregulating klotho and downregulating p21 in hADMSCs. These findings indicated that the O. caudata extract exhibited anti-aging properties that modulated hADMSC homeostasis. Therefore, it could be a potential candidate for restoring the self-renewal ability and multipotency of aging hADMSCs.

2.
Environ Toxicol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760990

RESUMEN

The primary function of the skin is to form a mechanical, permeability, antimicrobial, and ultraviolet radiation barrier, which is essential for maintaining physiological homeostasis. Our previous studies demonstrated that cutaneous pigmentation could promote skin barrier function in addition to providing anti-ultraviolet irradiation defense. The present study aimed to develop a new regimen that enhances skin barrier function by regulating skin pigmentation using low-concentration imiquimod. Results showed that topical application of low-concentration imiquimod effectively induced skin hyperpigmentation in the dorsal skin and external ear of mice without inducing inflammatory cell infiltration. An in vitro study also revealed that low-concentration imiquimod did not induce any cytotoxic effects on melanoma cells but triggered excessive melanin synthesis. In coculture systems, low-concentration imiquimod was noted to increase tyrosinase activity in a broader cellular context, revealing the potential role of neighboring cells in melanin production. The next-generation sequencing result indicated that PKCη and Dnm3 might regulate melanin synthesis and release during imiquimod treatment. Overall, our study presents new insights into the regulation of melanin production by low-concentration imiquimod, both in a mice model and cultured cells. Furthermore, our study highlights the potential benefits of imiquimod in promoting melanin synthesis without causing skin disruptions or inducing inflammation, validating its potential to serve as a method for enhancing skin barrier functions by regulating the epidermal melanization reaction.

3.
Environ Toxicol ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558324

RESUMEN

Platycodi radix is a widely used herbal medicine that contains numerous phytochemicals beneficial to health. The health and biological benefits of P. radix have been found across various diseases. The utilization of umbilical cord stromal stem cells, derived from Wharton's jelly of the human umbilical cord, has emerged as a promising approach for treating degenerative diseases. Nevertheless, growing evidence indicates that the function of stem cells declines with age, thereby limiting their regenerative capacity. The primary objective in this study is to investigate the beneficial effects of P. radix in senescent stem cells. We conducted experiments to showcase that diminished levels of Lamin B1 and Sox-2, along with an elevation in p21, which serve as indicative markers for the senescent stem cells. Our findings revealed the loss of Lamin B1 and Sox-2, coupled with an increase in p21, in umbilical cord stromal stem cells subjected to a low-dose (0.1 µM) doxorubicin (Dox) stimulation. However, P. radix restored the Dox-damage in the umbilical cord stromal stem cells. P. radix reversed the senescent conditions when the umbilical cord stromal stem cells exposed to Dox-induced reactive oxygen species (ROS) and mitochondrial membrane potential are significantly changed. In Dox-challenged aged umbilical cord stromal stem cells, P. radix reduced senescence, increased longevity, prevented mitochondrial dysfunction and ROS and protected against senescence-associated apoptosis. This study suggests that P. radix might be as a therapeutic and rescue agent for the aging effect in stem cells. Inhibition of cell death, mitochondrial dysfunction and aging-associated ROS with P. radix provides additional insights into the underlying molecular mechanisms.

4.
Am J Cancer Res ; 14(3): 979-995, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590406

RESUMEN

Colorectal cancer (CRC) ranks as the third leading cause of cancer-related mortality worldwide. The current standard of care includes systemic chemotherapy with cytotoxic agents, offering palliative relief for severe CRC cases and serving as the primary therapy for metastatic recurrence. However, the development of chemoresistance poses a substantial obstacle in the realm of chemotherapy. This study delved into the potential of a novel chromium (III)-based compound, hexaacetotetraaquadihydroxochromium (III) diiron (III) nitrate, for CRC treatment. The therapeutic promise of this innovative chromium (III)-based compound was explored by utilizing LoVo colon cancer cells and an in-vivo mouse model of CRC. Various dosages of the compound were administered to LoVo parental cells and LoVo oxaliplatin-resistant cells. Findings unveiled that a concentration of 2000 µg/mL of the chromium (III) compound significantly inhibited mesenchymal transition and the migratory and invasive properties of LoVo oxaliplatin-resistant cells. This novel chromium (III)-based compound also demonstrated similar efficacy in other different CRC cell lines. The tumor growth was in the in-vivo mouse model was reduced by this compound. Moreover, the chromium (III)-based compound induced apoptosis by triggering the endoplasmic reticulum (ER) stress pathway in LoVo oxaliplatin-resistant cells. This study illuminates the capacity of the novel chromium (III)-based compound to impede the progression and growth of chemotherapy-resistant CRC. This discovery instills confidence in the potential of this compound as a therapeutic agent for CRC, even in the face of drug resistance. It holds the promise of serving as a valuable asset in the future treatment of chemotherapy-resistant CRC.

5.
Environ Toxicol ; 39(2): 965-978, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37987213

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease affecting approximately 1% of the global population, with a higher prevalence in women than in men. Chronic inflammation and oxidative stress play pivotal roles in the pathogenesis of RA. Anethole, a prominent compound derived from fennel (Foeniculum vulgare), possesses a spectrum of therapeutic properties, including anti-arthritic, anti-inflammatory, antioxidant, and tumor-suppressive effects. However, its specific impact on RA remains underexplored. This study sought to uncover the potential therapeutic value of anethole in treating RA by employing an H2 O2 -induced inflammation model with HIG-82 synovial cells. Our results demonstrated that exposure to H2 O2 induced the inflammation and apoptosis in these cells. Remarkably, anethole treatment effectively countered these inflammatory and apoptotic processes triggered by H2 O2 . Moreover, we identified the aquaporin 1 (AQP1) and protein kinase A (PKA) pathway as critical regulators of inflammation and apoptosis. H2 O2 stimulation led to an increase in the AQP1 expression and a decrease in p-PKA-C, contributing to cartilage degradation. Conversely, anethole not only downregulated the AQP1 expression but also activated the PKA pathway, effectively suppressing cell inflammation and apoptosis. Furthermore, anethole also inhibited the enzymes responsible for cartilage degradation. In summary, our findings highlight the potential of anethole as a therapeutic agent for mitigating H2 O2 -induced inflammation and apoptosis in synovial cells, offering promising prospects for future RA treatments.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Masculino , Humanos , Femenino , Sinoviocitos/metabolismo , Acuaporina 1 , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inflamación/patología , Artritis Reumatoide/metabolismo , Fibroblastos/metabolismo , Células Cultivadas , Proliferación Celular
6.
Heliyon ; 9(9): e20011, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809843

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused 403 million cases of coronavirus disease (COVID-19) and resulted in more than 5.7 million deaths worldwide. Extensive research has identified several potential drug treatments for COVID-19. However, the development of new compounds or therapies is necessary to prevent the emergence of drug resistance in SARS-CoV-2. In this study, a novel compound based on hexaacetotetraaquadihydroxochromium(III)diiron(III) nitrate, which contains small amounts of chromium (III), was synthesised and evaluated for its effectiveness against multiple variants of COVID-19 using both in vitro and in vivo models. This innovative compound demonstrated interference with the interaction between the spike protein of SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2). Furthermore, in vitro experiments showed that this compound downregulated the expression of ACE2 and transmembrane serine protease 2 (TMPRSS2). It also exhibited a reduction in the activity of 3-chymotrypsin-like protease (3CL) and RNA-dependent RNA polymerase (RdRp). Pretreatment with this small chromium (III)-based compound resulted in reduced ACE2-rich cell infection by various variants of SARS-CoV-2 spike protein-pseudotyped lentivirus. Finally, the compound effectively inhibited viral infection by multiple variants of SARS-CoV-2 spike protein-pseudotyped lentivirus in both the abdominal and thoracic regions of mice. In conclusion, this compound lowers the likelihood of SARS-CoV-2 entry into cells, inhibits viral maturation and replication in vitro, and reduces infection levels of multiple variants of SARS-CoV-2 spike protein-pseudotyped lentivirus in the abdomen and thorax following pretreatment. Small chromium (III)-based compounds have the potential to restrict the progression of SARS-CoV-2 infections.

7.
Neurotox Res ; 41(6): 648-659, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37707697

RESUMEN

Patients with Alzheimer's disease have increased risk of developing heart disease, which therefore highlights the need for strategies aiming at reducing Alzheimer's disease-related cardiovascular disease. Folic acid and folinic acid are beneficial to the heart. We aimed to investigate the benefits of folic acid and folinic acid in heart of patients with late-stage Alzheimer's disease. Twelve 16-month-old mice of triple-transgenic late-stage Alzheimer's disease were divided into three groups: Alzheimer's disease group, Alzheimer's disease + folic acid group, and Alzheimer's disease + folinic acid group. The mice were administered 12 mg/kg folic acid or folinic acid once daily via oral gavage for 3 months. In the folic acid and folinic acid treatment groups, the intercellular space was reduced, compared with the Alzheimer's disease group. TUNEL assay and western blot images showed that the number of apoptotic cells and the apoptosis-related protein expression were higher in the Alzheimer's disease group than in other two treated groups. Folic acid and folinic acid induced the IGF1R/PI3K/AKT and SIRT1/ AMPK pathways in the hearts of mice with Alzheimer's disease. Our results showed that folic acid and folinic acid treatment increased survival and SIRT1 expression to reduce apoptotic proteins in the heart. The aging mice treated with folinic acid had more IGF1R and SIRT1/AMPK axes to limit myocardial cell apoptosis. In conclusion, folic acid and folinic acid promote cardiac cell survival and prevent apoptosis to inhibit heart damage in aging mice with triple-transgenic late-stage Alzheimer's disease. In particular, folinic acid provides a better curative effect than folic acid.


Asunto(s)
Enfermedad de Alzheimer , Ácido Fólico , Humanos , Ratones , Animales , Ácido Fólico/farmacología , Ácido Fólico/uso terapéutico , Leucovorina/farmacología , Leucovorina/uso terapéutico , Proteínas Quinasas Activadas por AMP , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratones Transgénicos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Sirtuina 1 , Envejecimiento , Receptor IGF Tipo 1
8.
Aging (Albany NY) ; 15(17): 9167-9181, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37708248

RESUMEN

Pathological cardiac hypertrophy is a considerable contributor to global disease burden. Chinese herbal medicine (CHM) has been used to treat cardiovascular diseases since antiquity. Enhancing stem cell-mediated recovery through CHM represents a promising approach for protection against doxorubicin (Dox)-induced cardiac hypertrophy. Herein, we investigated whether human adipose-derived stem cells (hADSCs) preconditioned with novel herbal formulation Jing Si (JS) improved protective ability of stem cells against doxorubicin-induced cardiac damage. The effect of JS on hADSC viability and migration capacity was determined via MTT and migration assays, respectively. Co-culture of hADSC or JS-preconditioned hADSCs with H9c2 cells was analyzed with immunoblot, flow cytometry, TUNEL staining, LC3B staining, F-actin staining, and MitoSOX staining. The in vivo study was performed M-mode echocardiography after the treatment of JS and JS-preconditioned hADSCs by using Sprague Dawley (SD) rats. Our results indicated that JS at doses below 100 µg/mL had less cytotoxicity in hADSC and JS-preconditioned hADSCs exhibited better migration. Our results also revealed that DOX enhanced apoptosis, cardiac hypertrophy, and mitochondrial reactive oxygen species in DOX-challenged H9c2 cells, while H9c2 cells co-cultured with JS-preconditioned hADSCs alleviated these effects. It also enhanced the expression of autophagy marker LC3B, mTOR and CHIP in DOX-challenged H9c2 cells after co-culture with JS-preconditioned hADSCs. In Dox-challenged rats, the ejection fraction and fractional shortening improved in DOX-challenged SD rats exposed to JS-preconditioned hADSCs. Taken together, our data indicate that JS-preconditioned stem cells exhibit a cardioprotective capacity both in vitro and in vivo, highlighting the value of this therapeutic approach for regenerative therapy.


Asunto(s)
Corazón , Células Madre , Humanos , Animales , Ratas , Ratas Sprague-Dawley , Doxorrubicina/toxicidad , Cardiomegalia
9.
Chem Biol Drug Des ; 102(6): 1399-1408, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37612133

RESUMEN

Trauma-hemorrhagic shock (THS) is a medical emergency that is encountered by physicians in the emergency department. Chuan Xiong is a traditional Chinese medicine and ligustrazine is a natural compound from it. Ligustrazine improves coronary blood flow and reduces cardiac ischemia in animals through Ca2+ and ATP-dependent vascular relaxation. It also decreases the platelets' bioactivity and reduces reactive oxygen species formation. We hypothesized that ligustrazine could protect liver by decreasing the inflammation response, protein production, and apoptosis in THS rats. Ligustrazine at doses of 100 and 1000 µg/mL was administrated in Kupffer cells isolated from THS rats. The protein expressions were detected via western blot. The THS showed increased inflammation response proteins, mitochondria-dependent apoptosis proteins, and had a compensation effect on the Akt pathway. After ligustrazine treatment, the hemorrhagic shock Kupffer cells decreased inflammatory response and mitochondria-dependent apoptosis and promoted a more compensative effect of the Akt pathway. It suggests ligustrazine reduces inflammation response and mitochondria-dependent apoptosis induced by THS in liver Kupffer cells and promotes more survival effects by elevating the Akt pathway. These findings demonstrate the beneficial effects of ligustrazine against THS-induced hepatic injury, and ligustrazine could be a potential medication to treat the liver injury caused by THS.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Choque Hemorrágico , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Choque Hemorrágico/tratamiento farmacológico , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Inflamación/tratamiento farmacológico
10.
Environ Toxicol ; 38(10): 2450-2461, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37461261

RESUMEN

Mitochondrial dysfunction has been linked to many diseases, including organ degeneration and cancer. Wharton's jelly-derived mesenchymal stem cells provide a valuable source for stem cell-based therapy and represent an emerging therapeutic approach for tissue regeneration. This study focused on screening the senomorphic properties of Ohwia caudata aqueous extract as an emerging strategy for preventing or treating mitochondrial dysfunction in stem cells. Wharton's jelly-derived mesenchymal stem cells were incubated with 0.1 µM doxorubicin, for 24 h to induce mitochondrial dysfunction. Next, the cells were treated with a series concentration of Ohwia caudata aqueous extract (25, 50, 100, and 200 µg/mL) for another 24 h. In addition, an untreated control group and a doxorubicin-induced mitochondrial dysfunction positive control group were maintained under the same conditions. Our data showed that Ohwia caudata aqueous extract markedly suppressed doxorubicin-induced mitochondrial dysfunction by increasing Tid1 and Tom20 expression, decreased reactive oxygen species production, and maintained mitochondrial membrane potential to promote mitochondrial stability. Ohwia caudata aqueous extract retained the stemness of Wharton's jelly-derived mesenchymal stem cells and reduced the apoptotic rate. These results indicate that Ohwia caudata aqueous extract protects Wharton's jelly-derived mesenchymal stem cells against doxorubicin-induced mitochondrial dysfunction and can potentially prevent mitochondrial dysfunction in other cells. This study provides new directions for the medical application of Ohwia caudata.


Asunto(s)
Células Madre Mesenquimatosas , Gelatina de Wharton , Animales , Gelatina de Wharton/metabolismo , Células Madre Mesenquimatosas/metabolismo , Doxorrubicina/toxicidad , Células Cultivadas , Mitocondrias/metabolismo , Urodelos , Diferenciación Celular
11.
Am J Chin Med ; 51(5): 1211-1232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37335210

RESUMEN

Cardiovascular diseases in post-menopausal women are on a rise. Oxidative stress is the main contributing factor to the etiology and pathogenesis of cardiovascular diseases. Diosgenin, a member of steroidal sapogenin, is structurally similar to estrogen and has been shown to have antioxidant effects. Therefore, we aimed to investigate the effects of diosgenin in preventing oxidation-induced cardiomyocyte apoptosis and assessed its potential as a substitute substance for estrogen in post-menopausal women. Apoptotic pathways and mitochondrial membrane potential were measured in H9c2 cardiomyoblast cells and neonatal cardiomyocytes treated with diosgenin for 1[Formula: see text]h prior to hydrogen peroxide (H2O2) stimulation. H2O2-stimulated H9c2 cardiomyoblast cells displayed cytotoxicity and apoptosis via the activation of both Fas-dependent and mitochondria-dependent pathways. Additionally, it led to the instability of the mitochondrial membrane potential. However, the H2O2-induced H9c2 cell apoptosis was rescued by diosgenin through IGF1 survival pathway activation. This led to the recovery of the mitochondrial membrane potential by suppressing the Fas-dependent and mitochondria-dependent apoptosis. Diosgenin also inhibited H2O2-induced cytotoxicity and apoptosis through the estrogen receptor interaction with PI3K/Akt and extracellular regulated protein kinases 1/2 activation in myocardial cells. In this study, we confirmed that diosgenin attenuated H2O2-induced cytotoxicity and apoptosis through estrogen receptors-activated phosphorylation of PI3K/Akt and ERK signaling pathways in myocardial cells via estrogen receptor interaction. All results suggest that H2O2-induced myocardial damage is reduced by diosgenin due to its interaction with estrogen receptors to decrease the damage. Herein, we conclude that diosgenin might be a potential substitute substance for estrogen in post-menopausal women to prevent heart diseases.


Asunto(s)
Enfermedades Cardiovasculares , Diosgenina , Recién Nacido , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Estrógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Peróxido de Hidrógeno/toxicidad , Diosgenina/farmacología , Estrés Oxidativo , Apoptosis , Estrógenos/metabolismo , Estrógenos/farmacología , Miocitos Cardíacos/metabolismo
12.
Mol Biol Rep ; 50(5): 4329-4338, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36928640

RESUMEN

BACKGROUND: Diabetic cardiomyopathy is a progressive disease caused by inexplicit mechanisms, and a novel factor, insulin-like growth factor II receptor-α (IGF-IIRα), may contribute to aggravating its pathogenesis. We hypothesized that IGF-IIRα could intensify diabetic heart injury. METHODS AND RESULTS: To demonstrate the potential role of IGF-IIRα in the diabetic heart, we used (SD-TG [IGF-IIRα]) transgenic rat model with cardiac-specific overexpression of IGF-IIRα, along with H9c2 cells, to study the effects of IGF-IIRα in the heart under hyperglycemic conditions. IGF-IIRα was found to remodel calcium homeostasis and intracellular Ca2+ overload-induced autophagy disturbance in the heart during diabetes. IGF-IIRα overexpression induced intracellular Ca2+ alteration by downregulating phosphorylated phospholamban/sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a (PLB/SERCA2a), resulting in the suppression of Ca2+ uptake into the endoplasmic reticulum. Additionally, IGF-IIRα itself contributed to Ca2+ withdrawal from the endoplasmic reticulum by increasing the expression of CaMKIIδ in the active form. Furthermore, alterations in Ca2+ homeostasis significantly dysregulated autophagy in the heart during diabetes. CONCLUSIONS: Our study reveals the novel role of IGF-IIRα in regulating cardiac intracellular Ca2+ homeostasis and its related autophagy interference, which contribute to the development of diabetic cardiomyopathy. In future, the present study findings have implications in the development of appropriate therapy to reduce diabetic cardiomyopathy.


Asunto(s)
Calcio , Cardiomiopatías Diabéticas , Ratas , Animales , Calcio/metabolismo , Factor II del Crecimiento Similar a la Insulina , Corazón , Proteínas de Unión al Calcio/metabolismo , Ratas Transgénicas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/farmacología , Homeostasis , Miocitos Cardíacos/metabolismo
13.
Drug Chem Toxicol ; 46(5): 1044-1050, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36216784

RESUMEN

To date, few studies have investigated the toxicological effects of the combined use of amphetamine and heroin in the heart. Hence, the aim of this study was to identify indicators for clinical evaluation and prevention of cardiac injury induced by the combined use of amphetamine and heroin. Four different groups were analyzed: (1) normal group (n=25;average age=35 ± 6.8); (2) heart disease group (n=25;average age=58 ± 17.2); (3) drug abusers (n = 27; average age = 37 ± 7.7); (4) drug abstainers (previous amphetamine-heroin users who had been drug-free for more than two weeks; n = 22; average age = 35 ± 5.6). The activity of MMPs, and levels of TNF-α, IL-6, GH, IGF-I, and several serum biomarkers were examined to evaluate the impact of drug abuse on the heart. The selected plasma biomarkers and classic cardiac biomarkers were significantly increased compared to the normal group. The zymography data showed the changes in cardiac-remodeling enzymes MMP-9 and MMP-2 among combined users of amphetamine and heroin. The levels of TNF-α and IL-6 only increased in the heart disease group. Growth hormone was increased; however, IGF-I level decreased with drug abuse and the level was not restored by abstinence. We speculated that the amphetamine-heroin users might pose risk to initiate heart disease even though the users abstained for more than two weeks. The activity change of MMP-9 and MMP-2 can be a direct reason affecting heart function. The indirect reason may be related to liver damage by drug abuse reduce IGF-1 production to protect heart function.


Asunto(s)
Cardiopatías , Lesiones Cardíacas , Dependencia de Heroína , Humanos , Adulto , Persona de Mediana Edad , Anciano , Factor I del Crecimiento Similar a la Insulina , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Heroína , Dependencia de Heroína/complicaciones , Interleucina-6 , Factor de Necrosis Tumoral alfa , Anfetamina , Biomarcadores
14.
Environ Toxicol ; 38(3): 676-684, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36462176

RESUMEN

Diabetes-induced cardiovascular complications are mainly associated with high morbidity and mortality in patients with diabetes. Insulin-like growth factor II receptor α (IGF-IIRα) is a cardiac risk factor. In this study, we hypothesized IGF-IIRα could also deteriorate diabetic heart injury. The results presented that both in vivo transgenic Sprague-Dawley rat model with specific IGF-IIRα overexpression in the heart and in vitro myocardium H9c2 cells were used to investigate the negative function of IGF-IIRα in diabetic hearts. The results showed that IGF-IIRα overexpression aided hyperglycemia in creating more myocardial injury. Pro-inflammatory factors, such as Tumor necrosis factor-alpha, Interleukin-6, Cyclooxygenase-2, Inducible nitric oxide synthase, and Nuclear factor-kappaB inflammatory cascade, are enhanced in the diabetic myocardium with cardiac-specific IGF-IIRα overexpression. Correspondingly, IGF-IIRα overexpression in the diabetic myocardium also reduced the PI3K-AKT survival axis and activated mitochondrial-dependent apoptosis. Finally, both ejection fraction and fractional shortening were be significantly decrease in diabetic rats with cardiac-specific IGF-IIRα overexpression. Overall, all results provid clear evidence that IGF-IIRα can enhance cardiac damage and is a harmful factor to the heart under high-blood glucose conditions. However, the pathophysiology of IGF-IIRα under different stresses and its downstream regulation in the heart still require further research.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Infarto del Miocardio , Ratas , Animales , Factor II del Crecimiento Similar a la Insulina , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/inducido químicamente , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/metabolismo , Apoptosis , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperglucemia/patología , Inflamación/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo
15.
Probiotics Antimicrob Proteins ; 15(5): 1287-1297, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36044175

RESUMEN

Diabetes-related brain complications have been reported in clinical patients and experimental models. The objective of the present study was to investigate the neuroprotective mechanisms of Lactobacillus reuteri GMNL-263 in streptozotocin (STZ)-induced diabetic rats. In this study, three different groups, namely control group, STZ-induced (55 mg/kg streptozotocin intraperitoneally) diabetic rats (DM), and DM rats treated with Lactobacillus reuteri GMNL-263 (1 × 109 CFU/rat/day), were utilized to study the protective effect of GMNL-263 in the hippocampus of STZ-induced diabetic rats. The results demonstrated that GMNL-263 attenuated diabetes-induced hippocampal damage by enhancing the cell survival pathways and repressing both inflammatory and apoptotic pathways. Histopathological analysis revealed that GMNL-263 prevented structural changes in the hippocampus in the DM group and decreased the level of inflammation and apoptosis in the hippocampus of DM rats. The IGF1R cell survival signaling pathway also improved after GMNL-263 treatment. These results indicate that probiotic GMNL-263 exerts beneficial effects in the brain of diabetic rats and has potential ability for clinical application.


Asunto(s)
Diabetes Mellitus Experimental , Limosilactobacillus reuteri , Fármacos Neuroprotectores , Probióticos , Ratas , Animales , Fármacos Neuroprotectores/farmacología , Estreptozocina/efectos adversos , Estreptozocina/metabolismo , Hipocampo
16.
J Hypertens ; 40(12): 2502-2512, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36093879

RESUMEN

BACKGROUND: Hypertension is a severe public health risk factor worldwide. Elevated angiotensin II (Ang II) produced by the renin-angiotensin-aldosterone system can lead to hypertension and its complications. METHOD: In this study, we addressed the cardiac-injury effects of Ang II and investigated the signaling mechanism induced by Ang II. Both H9c2 cardiomyoblast cells and neonatal rat cardiomyocytes were exposed to Ang II to observe hypertension-related cardiac apoptosis. RESULTS: The results of western blotting revealed that Ang II significantly attenuated the IGF1R-PI3K-AKT pathway via the Ang II-AT1 receptor axis and phosphatase and tensin homolog expression. Furthermore, real-time PCR showed that Ang II also activated miR-320-3p transcription to repress the PI3K-Akt pathway. In the heart tissue of spontaneously hypertensive rats, activation of the IGF1R survival pathway was also reduced compared with that in Wistar-Kyoto rats, especially in aged spontaneously hypertensive rats. CONCLUSION: Hence, we speculate that the Ang II-AT1 receptor axis induces both phosphatase and tensin homolog and miR-320-3p expression to downregulate the IGF1R-PI3K-AKT survival pathway and cause cell apoptosis in the heart.


Asunto(s)
Hipertensión , MicroARNs , Ratas , Animales , Angiotensina II/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Tensinas/metabolismo , Ratas Endogámicas SHR , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/farmacología , Ratas Endogámicas WKY , Apoptosis , Miocitos Cardíacos/metabolismo , Hipertensión/metabolismo , MicroARNs/metabolismo
17.
Neurotox Res ; 40(5): 1223-1234, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35829999

RESUMEN

Adipose tissue-derived mesenchymal stem cells (ADSC) exert neuroprotective and anti-inflammatory effects. ADSCs are considered potential therapeutics for rheumatoid arthritis (RA), an inflammatory, multisystemic autoimmune disease. Epigallocatechin-3-gallate (EGCG), the major polyphenolic compound in green tea, has strong anti-inflammatory and antioxidant properties. This study aimed to investigate whether EGCG has a synergistic effect on the neuroprotective effects of ADSCs to protect the RA-damaged brain. Wistar rats were classified into four groups: sham, RA, RA + ADSCs (1 × 106 cells per rat), and RA + EGCG (10 µM)-pretreated ADSCs. After 2 months of treatment, the brain tissues from the rats were collected and investigated. The brains of RA rats had higher inflammation and apoptosis. ADSC treatment ameliorated these negative effects significantly; however, the neuroprotective abilities of EGCG-pretreated ADSCs were significantly higher than ADSCs. Furthermore, the RA-induced repression of the PI3K/Akt survival pathway was reactivated by EGCG-pretreated ADSCs. Collectively, this study provides evidence that EGCG synergistically enhances the neuroprotective ability of ADSCs to repress the negative effects of RA on the brain. These findings could help develop new therapeutic strategies against RA or other neurodegenerative diseases after clinical validation in the future.


Asunto(s)
Artritis Reumatoide , Catequina , Fármacos Neuroprotectores , Animales , Antioxidantes/farmacología , Encéfalo/metabolismo , Catequina/análogos & derivados , Catequina/farmacología , Colágeno/metabolismo , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Células Madre/metabolismo ,
18.
Am J Chin Med ; 50(5): 1299-1314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35726142

RESUMEN

Neurodegenerative diseases have become increasingly prevalent in the aged population. Rheumatoid arthritis (RA) is an autoimmune disease that causes systemic inflammation, damaging the neurons. However, only a few treatment options can reduce RA-induced neurodegeneration. This study aimed to evaluate whether adipose-derived stem cells (ADSCs) pretreated with curcumin could ameliorate RA-induced neurodegenerative illness in an RA rat model. Wistar rats were randomly classified into the following four groups: control, RA, RA + ADSC (1 × 106 cells per rat), and RA + curcumin-pretreated ADSC (1 × 106 cells per rat). After treatment for two months, the effects were specifically evaluated in the brains collected from the rats. Our results demonstrated that the transplantation of curcumin-pretreated ADSCs substantially reduced inflammation and apoptosis in the cortices of RA rats compared to those of other groups. Thus, the combination of ADSCs and curcumin exerts a synergistic effect in enhancing neuronal protection in RA rats. In the future, this combination therapeutic strategy can potentially be used as a novel treatment method to reduce RA-induced neurodegenerative disorders.


Asunto(s)
Artritis Reumatoide , Curcumina , Tejido Adiposo , Animales , Artritis Reumatoide/terapia , Encéfalo , Curcumina/farmacología , Inflamación , Neuroprotección , Ratas , Ratas Wistar , Células Madre
19.
Biogerontology ; 22(5): 495-506, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34251569

RESUMEN

Ageing is a complex biological process that increases the probability of disease and death, which affects the organs of all species. The accumulation of oxidative damage in the brain contributes to a progressive loss of cognitive functions or even declined the energy metabolism. In this study, we tested the effects of exercise training on the apoptosis, survival, and antioxidant signaling pathways in the cerebral cortex of three age groups of male rats; 3, 12, and 18 months. We observed that H2S and the expression of Nrf2-related antioxidant pathways declined with age and increased after exercise training. IGF1R survival pathway was less increased in middle-aged rats; however, significantly increased after exercise training. The expression of mitochondrial-dependent apoptotic pathway components, such as Bak, cytochrome C, and caspase 3 in the ageing control group, were much higher than those of the exercise training groups. This study demonstrated that exercise training could reduce the apoptosis and oxidative stress that accrues throughout ageing, which causes brain damage.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Envejecimiento , Animales , Apoptosis , Corteza Cerebral/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Ratas
20.
Environ Toxicol ; 36(8): 1567-1575, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33929070

RESUMEN

Habitual chewing of areca nut increases the risk of cardiovascular disease mortality, but less report demonstrate the toxic mechanism of areca nut on heart. To investigate toxicity of areca nut on cardiomyocytes, we induced the heart injury with arecoline to evaluate the acute damage of areca nut on heart. Different concentrations of are coline (lowdosage: 5 mg/kg/day and high dosage 50 mg/kg/day) were injected into Sprague-Dawley rat via intra-peritoneal method for 21 days to create negative effects of arecoline on cardiomyocyte. Themyocardial architecture of the rat heart was observed. The arecoline-induced apoptotic proteins were analysed via western blotting. The myocardialarchitecture of heart was injured with arecoline and TUNEL stain was also shown are coline-induced cardiac apoptosis. Arecoline promoted the protein expression of both Fas dependent snd mitochondrial dependent apoptosis. In summary, arecoline induces cardiac toxicity and apoptosis by inducing both death receptor and mitochondria-dependent apoptotic pathways on heart.


Asunto(s)
Areca , Arecolina , Animales , Proteína Ligando Fas , Extractos Vegetales , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...