Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 289(1984): 20220740, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36196539

RESUMEN

Significant evolutionary shifts in locomotor behaviour often involve comparatively subtle anatomical transitions. For dinosaurian and avian evolution, medial overhang of the proximal femur has been central to discussions. However, there is an apparent conflict with regard to the evolutionary origin of the dinosaurian femoral head, with neontological and palaeontological data suggesting seemingly incongruent hypotheses. To reconcile this, we reconstructed the evolutionary history of morphogenesis of the proximal end of the femur from early archosaurs to crown birds. Embryological comparison of living archosaurs (crocodylians and birds) suggests the acquisition of the greater overhang of the femoral head in dinosaurs results from additional growth of the proximal end in the medial-ward direction. On the other hand, the fossil record suggests that this overhang was acquired by torsion of the proximal end, which projected in a more rostral direction ancestrally. We reconcile this apparent conflict by inferring that the medial overhang of the dinosaur femoral head was initially acquired by torsion, which was then superseded by mediad growth. Details of anatomical shifts in fossil forms support this hypothesis, and their biomechanical implications are congruent with the general consensus regarding broader morpho-functional evolution on the avian stem.


Asunto(s)
Dinosaurios , Cabeza Femoral , Animales , Evolución Biológica , Aves , Dinosaurios/anatomía & histología , Fósiles , Morfogénesis , Filogenia
2.
Evolution ; 74(8): 1654-1681, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32433795

RESUMEN

Saurischian dinosaurs evolved seven orders of magnitude in body mass, as well as a wide diversity of hip joint morphology and locomotor postures. The very largest saurischians possess incongruent bony hip joints, suggesting that large volumes of soft tissues mediated hip articulation. To understand the evolutionary trends and functional relationships between body size and hip anatomy of saurischians, we tested the relationships among discrete and continuous morphological characters using phylogenetically corrected regression. Giant theropods and sauropods convergently evolved highly cartilaginous hip joints by reducing supraacetabular ossifications, a condition unlike that in early dinosauromorphs. However, transitions in femoral and acetabular soft tissues indicate that large sauropods and theropods built their hip joints in fundamentally different ways. In sauropods, the femoral head possesses irregularly rugose subchondral surfaces for thick hyaline cartilage. Hip articulation was achieved primarily using the highly cartilaginous femoral head and the supraacetabular labrum on the acetabular ceiling. In contrast, theropods covered their femoral head and neck with thinner hyaline cartilage and maintained extensive articulation between the fibrocartilaginous femoral neck and the antitrochanter. These findings suggest that the hip joints of giant sauropods were built to sustain large compressive loads, whereas those of giant theropods experienced compression and shear forces.


Asunto(s)
Evolución Biológica , Cartílago Articular/anatomía & histología , Dinosaurios/anatomía & histología , Articulación de la Cadera/anatomía & histología , Animales , Tamaño Corporal , Dinosaurios/genética
3.
J Anat ; 236(2): 288-304, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31691966

RESUMEN

Extant archosaurs exhibit highly divergent articular soft tissue anatomies between avian and crocodilian lineages. However, the general lack of understanding of the dynamic interactions among archosaur joint soft tissues has hampered further inferences about the function and evolution of these joints. Here we use contrast-enhanced computed tomography to generate 3D surface models of the pelvis, femora, and hip joint soft tissues in an extant archosaur, the American alligator. The hip joints were then animated using marker-based X-Ray Reconstruction of Moving Morphology (XROMM) to visualize soft tissue articulation during forward terrestrial locomotion. We found that the anatomical femoral head of the alligator travels beyond the cranial extent of the bony acetabulum and does not act as a central pivot, as has been suggested for some extinct archosaurs. Additionally, the fibrocartilaginous surfaces of the alligator's antitrochanter and femoral neck remain engaged during hip flexion and extension, similar to the articulation between homologous structures in birds. Moreover, the femoral insertion of the ligamentum capitis moves dorsoventrally against the membrane-bound portion of the medial acetabular wall, suggesting that the inner acetabular foramen constrains the excursion of this ligament as it undergoes cyclical stretching during the step cycle. Finally, the articular surface of the femoral cartilage model interpenetrates with those of the acetabular labrum and antitrochanter menisci; we interpret such interpenetration as evidence of compressive deformation of the labrum and of sliding movement of the menisci. Our data illustrate the utility of XROMM for studying in vivo articular soft tissue interactions. These results also allow us to propose functional hypotheses for crocodilian hip joint soft tissues, expanding our knowledge of vertebrate connective tissue biology and the role of joint soft tissues in locomotor behavior.


Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Cartílago Articular/diagnóstico por imagen , Fémur/diagnóstico por imagen , Articulación de la Cadera/diagnóstico por imagen , Pelvis/diagnóstico por imagen , Caimanes y Cocodrilos/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Cartílago Articular/anatomía & histología , Cartílago Articular/fisiología , Fémur/anatomía & histología , Fémur/fisiología , Articulación de la Cadera/anatomía & histología , Articulación de la Cadera/fisiología , Pelvis/anatomía & histología , Pelvis/fisiología
4.
J Anat ; 228(6): 889-909, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26970556

RESUMEN

Morphologists have historically had to rely on destructive procedures to visualize the three-dimensional (3-D) anatomy of animals. More recently, however, non-destructive techniques have come to the forefront. These include X-ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard-tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT-based research is the use of chemical agents to render visible, and differentiate between, soft-tissue structures in X-ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine-based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine-based, contrast-enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting-edge applications of diffusible iodine-based contrast-enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward.


Asunto(s)
Anatomía Comparada/métodos , Medios de Contraste , Imagenología Tridimensional , Yoduros , Tomografía Computarizada por Rayos X , Animales
5.
J Morphol ; 276(6): 601-30, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25545345

RESUMEN

Archosaurs evolved a wide diversity of locomotor postures, body sizes, and hip joint morphologies. The two extant archosaurs clades (birds and crocodylians) possess highly divergent hip joint morphologies, and the homologies and functions of their articular soft tissues, such as ligaments, cartilage, and tendons, are poorly understood. Reconstructing joint anatomy and function of extinct vertebrates is critical to understanding their posture, locomotor behavior, ecology, and evolution. However, the lack of soft tissues in fossil taxa makes accurate inferences of joint function difficult. Here, we describe the soft tissue anatomies and their osteological correlates in the hip joint of archosaurs and their sauropsid outgroups, and infer structural homology across the extant taxa. A comparative sample of 35 species of birds, crocodylians, lepidosaurs, and turtles ranging from hatchling to skeletally mature adult were studied using dissection, imaging, and histology. Birds and crocodylians possess topologically and histologically consistent articular soft tissues in their hip joints. Epiphyseal cartilages, fibrocartilages, and ligaments leave consistent osteological correlates. The archosaur acetabulum possesses distinct labrum and antitrochanter structures on the supraacetabulum. The ligamentum capitis femoris consists of distinct pubic- and ischial attachments, and is homologous with the ventral capsular ligament of lepidosaurs. The proximal femur has a hyaline cartilage core attached to the metaphysis via a fibrocartilaginous sleeve. This study provides new insight into soft tissue structures and their osteological correlates (e.g., the antitrochanter, the fovea capitis, and the metaphyseal collar) in the archosaur hip joint. The topological arrangement of fibro- and hyaline cartilage may provide mechanical support for the chondroepiphysis. The osteological correlates identified here will inform systematic and functional analyses of archosaur hindlimb evolution and provide the anatomical foundation for biomechanical investigations of joint tissues.


Asunto(s)
Cartílago/anatomía & histología , Fósiles/anatomía & histología , Miembro Posterior/anatomía & histología , Articulación de la Cadera/anatomía & histología , Ligamentos/anatomía & histología , Tendones/anatomía & histología , Caimanes y Cocodrilos/anatomía & histología , Animales , Evolución Biológica , Aves/anatomía & histología
6.
PLoS One ; 8(6): e62806, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23762228

RESUMEN

Modern imaging and dissemination methods enable morphologists to share complex, three-dimensional (3D) data in ways not previously possible. Here we present a 3D interactive model of the jaw musculature of the American Alligator (Alligator mississippiensis). Alligator and crocodylian jaw musculature is notoriously challenging to inspect and interpret because of the derived nature of the feeding apparatus. Using Iodine-contrast enhanced microCT imaging, a segmented model of jaw muscles, trigeminal nerve, brain and skull are presented as a cross-sectional atlas and 3D, interactive pdf of the rendered model. Modern 3D dissemination methods like this 3D Alligator hold great potential for morphologists to share anatomical information to scientists, educators, and the public in an easily downloadable format.


Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Imagenología Tridimensional , Maxilares/anatomía & histología , Modelos Anatómicos , Músculos/anatomía & histología , Animales , Maxilares/diagnóstico por imagen , Músculos/diagnóstico por imagen , Cráneo/anatomía & histología , Cráneo/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Nervio Trigémino/anatomía & histología , Nervio Trigémino/diagnóstico por imagen
7.
PLoS One ; 6(9): e24935, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21949795

RESUMEN

The cartilago transiliens is a fibrocartilaginous structure within the jaw muscles of crocodylians. The cartilago transiliens slides between the pterygoid buttress and coronoid region of the lower jaw and connects two muscles historically identified as m. pseudotemporalis superficialis and m. intramandibularis. However, the position of cartilago transiliens, and its anatomical similarities to tendon organs suggest the structure may be a sesamoid linking a single muscle. Incompressible sesamoids often form inside tendons that wrap around bone. However, such structures rarely ossify in reptiles and have thus far received scant attention. We tested the hypothesis that the cartilago transiliens is a sesamoid developed within in one muscle by investigating its structure in an ontogenetic series of Alligator mississippiensis using dissection, 3D imaging, and polarizing and standard light microscopy. In all animals studied, the cartilago transiliens receives collagen fibers and tendon insertions from its two main muscular attachments. However, whereas collagen fibers were continuous within the cartilaginous nodule of younger animals, such continuity decreased in older animals, where the fibrocartilaginous core grew to displace the fibrous region. Whereas several neighboring muscles attached to the fibrous capsule in older individuals, only two muscles had significant contributions to the structure in young animals. Our results indicate that the cartilago transiliens is likely a sesamoid formed within a single muscle (i.e., m. pseudotemporalis superficialis) as it wraps around the pterygoid buttress. This tendon organ is ubiquitous among fossil crocodyliforms indicating it is a relatively ancient, conserved structure associated with the development of the large pterygoid flanges in this clade. Finally, these findings indicate that similar tendon organs exist among potentially homologous muscle groups in birds and turtles, thus impacting inferences of jaw muscle homology and evolution in sauropsids in general.


Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Caimanes y Cocodrilos/fisiología , Evolución Biológica , Cartílago/anatomía & histología , Maxilares/anatomía & histología , Maxilares/fisiología , Músculos/anatomía & histología , Animales , Aves/fisiología , Desarrollo de Músculos , Tendones/anatomía & histología , Tortugas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...