Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 229: 116460, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098731

RESUMEN

Oral squamous cell carcinoma (OSCC) poses a significant public health burden due to its high prevalence and poor prognosis. Platinum resistance is one of the major challenges in OSCC treatment. Yes-associated protein (YAP) has been identified as a pivotal player in OSCC tumorigenesis and progression. Circular RNA (circRNA) has been implicated in chemoresistance in various cancers by regulation the function of microRNA. Nevertheless, the specific mechanisms linking circRNA to YAP expression in OSCC remain poorly understood. In this study, we detected the YAP and circRNA hsa_circ_0002722 (circ_0002722) expression by western blot (WB) and quantitative polymerase chain reaction (qPCR). We found that YAP and circ_0002722 were up-regulated in platinum resistance in OSCC tissues. Furthermore, transfection of circ_0002722 siRNA into platinum-resistant cells revealed that circ_0002722 acted as a regulator of miR-1305, which influenced YAP expression and thereby affected platinum sensitivity. In vivo experiments corroborated the synergistic effects of cisplatin and verteporfin (a YAP inhibitor) in combating platinum resistance. Targeting YAP emerges as a promising therapeutic strategy for addressing platinum resistance in OSCC, with circ_0002722 serving as a potential therapy target and valuable diagnostic marker. These findings shed light on the underlying mechanisms of platinum resistance, paving the way for the development of effective treatment approaches.

2.
J Dent Sci ; 19(3): 1452-1460, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39035342

RESUMEN

Background/purpose: Osteoclast differentiation is crucial for orchestrating both tooth movement and the maintenance of bone density. Therefore, the current study sought to explore the impact of low-level laser therapy (LLLT) on osteoclast differentiation, functional gene expression, molecular signaling pathways, and orthodontic tooth movement in clinical settings. Materials and methods: The RAW 264.7 cell line served as the precursor for osteoclasts, and these cells underwent irradiation using a 808-nm LLLT. Osteoclast differentiation was assessed through tartrate-resistant acid phosphatase (TRAP) staining. Functional gene expression levels were evaluated using real-time quantitative polymerase chain reaction (RT-qPCR) while signaling molecules were examined through Western blot analysis. In the clinical study, 12 participants were enrolled. Their tooth movement was monitored using a TRIOS desktop scanner. Bone density measurements were conducted using Mimics software, which processed cone-beam computed tomography (CBCT) images exported in Digital Imaging and Communications in Medicine (DICOM) format. Results: We found that LLLT effectively promoted receptor activator of nuclear factor-κB ligand (RANKL)-dependent osteoclast differentiation and the expression of osteoclast functional genes, including matrix metallopeptidase 9 (MMP9), nuclear factor of activated T-cells cytoplasmic 1(NFATc1), tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CTSK) in RAW264.7 cells. Clinically, the cumulative tooth movement over 90 days was significantly higher in the laser group than in the control group. Conclusion: Our research demonstrates that LLLT not only significantly promotes osteoclast differentiation but is also a valuable adjunct in orthodontic therapy.

3.
Environ Toxicol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924303

RESUMEN

Osteosarcoma, a highly aggressive bone cancer, often develops resistance to conventional chemotherapeutics, leading to poor prognosis and survival rates. The malignancy and chemoresistance of osteosarcoma pose significant challenges in its treatment, highlighting the critical need for novel therapeutic approaches. Bruton's tyrosine kinase (BTK) plays a pivotal role in B-cell development and has been linked to various cancers, including breast, lung, and oral cancers, where it contributes to tumor growth and chemoresistance. Despite its established importance in these malignancies, the impact of BTK on osteosarcoma remains unexplored. Our study delves into the expression levels of BTK in osteosarcoma tissues by data from the GEO and TCGA database, revealing a marked increase in BTK expression compared with primary osteoblasts and a potential correlation with primary site progression. Through our investigations, we identified a subset of osteosarcoma cells, named cis-HOS, which exhibited resistance to cisplatin. These cells displayed characteristics of cancer stem cells (CSCs), demonstrated a higher angiogenesis effect, and had an increased migration ability. Notably, an upregulation of BTK was observed in these cisplatin-resistant cells. The application of ibrutinib, a BTK inhibitor, significantly mitigated these aggressive traits. Our study demonstrates that BTK plays a crucial role in conferring chemoresistance in osteosarcoma. The upregulation of BTK in cisplatin-resistant cells was effectively countered by ibrutinib. These findings underscore the potential of targeting BTK as an effective strategy to overcome chemoresistance in osteosarcoma treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA