Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36432942

RESUMEN

Syndiotactic poly(4-methyl-1-pentene) (sP4M1P)-based stereoregular diblock copolymers, namely sP4M1P-b-polystyrene and sP4M1P-b-polymethylmethacrylate, were prepared from an α-bromoester-capped sP4M1P macroinitiator, which was chain extended with styrene and methyl methacrylate, respectively, via the atom transfer radical polymerization reaction. The α-bromoester-capped sP4M1P was generated by the esterification of hydroxyl-capped sP4M1P with α-bromoisobutyryl bromide. The hydroxyl-capped sP4M1P was synthesized by inducing a selective chain transfer reaction to aluminum during the syndiospecific polymerization of 4-methyl-1-pentene in the presence of a syndiospecific metallocene catalyst. As stereoregular diblock copolymers are difficult to prepare using existing methods, the current study offers an effective process for the preparation of sP4M1P-based stereoregular diblock copolymers. These copolymers were found to have well-defined architectures and they can undergo molecular self-assembly into ordered nanostructures, as evidenced by small-angle X-ray scattering analyses.

2.
Polymers (Basel) ; 13(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34641230

RESUMEN

Blending with homopolymer offers a facile approach for tuning the microdomain morphology of block copolymer, provided that the homopolymer chains are uniformly solubilized in the corresponding microdomain to swell the junction point separation. Here we studied the solubilization behavior of poly(4-vinyl pyridine) homopolymer (h-P4VP) in the lamellar microdomain formed by its blends with a poly(ethylene oxide)-block-poly(4-vinyl pyridine) (PEO-b-P4VP) showing the feature of lower critical ordering transition (LCOT) in terms of weaker segregation strength at lower temperature. We revealed that, while the conventional criterion of homopolymer-to-block molecular weight ratio for attaining uniform solubilization was applicable to LCOT blend, there was an excess swelling of junction point separation upon the addition of homopolymer, leading to a decrease of interdomain distance with increasing homopolymer composition. This anomalous phenomenon was attributed to the reduction of interfacial free energy due to the incorporation of P4VP homopolymer into the microdomain interface.

3.
Sci Adv ; 6(42)2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33055164

RESUMEN

Nanonetwork-structured materials can be found in nature and synthetic materials. A double gyroid (DG) with a pair of chiral networks but opposite chirality can be formed from the self-assembly of diblock copolymers. For triblock terpolymers, an alternating gyroid (GA) with two chiral networks from distinct end blocks can be formed; however, the network chirality could be positive or negative arbitrarily, giving an achiral phase. Here, by taking advantage of chirality transfer at different length scales, GA with controlled chirality can be achieved through the self-assembly of a chiral triblock terpolymer. With the homochiral evolution from monomer to multichain domain morphology through self-assembly, the triblock terpolymer composed of a chiral end block with a single-handed helical polymer chain gives the chiral network from the chiral end block having a particular handed network. Our real-space analyses reveal the preferred chiral sense of the network in the GA, leading to a chiral phase.

4.
Proc Natl Acad Sci U S A ; 116(10): 4080-4089, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30765528

RESUMEN

We explore the generality of the influence of segment chirality on the self-assembled structure of achiral-chiral diblock copolymers. Poly(cyclohexylglycolide) (PCG)-based chiral block copolymers (BCPs*), poly(benzyl methacrylate)-b-poly(d-cyclohexylglycolide) (PBnMA-PDCG) and PBnMA-b-poly(l-cyclohexyl glycolide) (PBnMA-PLCG), were synthesized for purposes of systematic comparison with polylactide (PLA)-based BCPs*, previously shown to exhibit chirality transfer from monomeric unit to the multichain domain morphology. Opposite-handed PCG helical chains in the enantiomeric BCPs* were identified by the vibrational circular dichroism (VCD) studies revealing transfer from chiral monomers to chiral intrachain conformation. We report further VCD evidence of chiral interchain interactions, consistent with some amounts of handed skew configurations of PCG segments in a melt state packing. Finally, we show by electron tomography [3D transmission electron microscope tomography (3D TEM)] that chirality at the monomeric and intrachain level ultimately manifests in the symmetry of microphase-separated, multichain morphologies: a helical phase (H*) of hexagonally, ordered, helically shaped tubular domains whose handedness agrees with the respective monomeric chirality. Critically, unlike previous PLA-based BCP*s, the lack of a competing crystalline state of the chiral PCGs allowed determination that H* is an equilibrium phase of chiral PBnMA-PCG. We compared different measures of chirality at the monomer scale for PLA and PCG, and argued, on the basis of comparison with mean-field theory results for chiral diblock copolymer melts, that the enhanced thermodynamic stability of the mesochiral H* morphology may be attributed to the relatively stronger chiral intersegment forces, ultimately tracing from the effects of a bulkier chiral side group on its main chain.

5.
Chem Commun (Camb) ; 54(97): 13706-13709, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30452029

RESUMEN

Stereoregular side-chain photoluminescent (PL) polymers were synthesized via the stereospecific polymerization of 9,9-dibutyl-2-(4-vinylphenyl)-9H-fluorene. The resulting isotactic, syndiotactic and atactic poly(9,9-dibutyl-2-(4-vinylphenyl)-9H-fluorene) polymers were used as stereoregular polymer samples for examining the configurational tacticity effect on their PL properties. Our results revealed a unique tacticity-dependent effect as observed by an obvious red-shifting of the PL emission by increasing the degree of isotacticity of these stereoregular polymers; despite the ultraviolet spectra of these polymers exhibited similar absorption patterns. This study provides a new structural design for the syntheses of PL polymers.

6.
Angew Chem Int Ed Engl ; 54(48): 14313-6, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26447740

RESUMEN

Herein, we suggest a unique approach to control the handedness of twisted lamellae in banded spherulites of a stereoregular polymer, isotactic poly(2-vinylpyridine) (iP2VP). When (R)- or (S)-hexahydromandelic acid (HMA), which can associate with iP2VP, was introduced as a chiral dopant, mirror-image CD spectra in the complex systems showed induced circular dichroism (ICD) of the iP2VP by chiral HMA. Banded spherulites resulting from lamellar twisting due to the imbalanced stresses at the opposite folding surfaces could be formed by crystallization of the iP2VP/HMA complexes, which had a crystalline structure similar to that of neat iP2VP. A preferential sense of the twisted crystalline lamellae was found in the iP2VP/HMA complex, thus suggesting homochiral evolution from conformational to hierarchical chirality.

7.
J Phys Chem B ; 116(40): 12357-71, 2012 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-22913524

RESUMEN

We investigate the crystallization behavior of isotactic polypropylene (iPP) under the influence of nanoscale confinement templated by the microphase-separated structure of an iPP-based diblock copolymer system, isotactic polypropylene-block-atactic polystyrene (iPP-b-aPS). Three types of iPP microdomains, i.e., lamellae, cylinder, and sphere, were generated by controlling the composition of the diblock. The effect of microdomain morphology on the nucleation mechanism, crystallization kinetics, self-nucleation behavior, the population of the helical sequence of iPP block in the melt state, and crystal orientation have been systematically studied. It was found that the crystallization rate of iPP was predominantly controlled by homogeneous nucleation when the crystallization process was largely confined within the individual cylindrical and spherical microdomains. Such a nucleation mechanism and the highly frustrated crystal growth in the isolated microdomains led to the absence of Domain II and atypical crystallization kinetics in Domain III in the self-nucleation study. The population of the longer helical sequence of iPP block revealed by infrared spectroscopy was found to be affected by temperature but not by the spatial confinement, chain stretching, and junction point constraint imposed by the microdomains. Finally, the orientation of α-form iPP crystals in the lamellae-forming iPP-b-aPS was identified over a broad range of crystallization temperatures (T(c)). Different from other crystalline-amorphous diblocks, a lamellar branching of α-form iPP was observed in the lamellar microdomains at T(c) lying between 15 and 80 °C, where the daughter lamellae developed from the perpendicularly orientated parent iPP crystals with a specific angle of 80° or 100°. Once the sample was crystallized at T(c) ≤ 10 °C, the iPP crystals became randomly oriented.


Asunto(s)
Polipropilenos/química , Poliestirenos/química , Cristalización , Cinética
8.
Dalton Trans ; 41(25): 7700-7, 2012 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-22622350

RESUMEN

The reactions of Zr(NR(2))(4) (1, R = Me; 2, R = Et) with an asymmetrical tridentate pincer type pyrrole ligand precursor [C(4)H(2)NH(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))] and treatment of the derivatives with either PhNCS or PhNCO have been carried out and characterized. Reacting Zr(NR(2))(4) (1, R = Me; 2, R = Et) with [C(4)H(2)NH(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))] generates Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NR(2))(2) (3, R = Me; 4, R = Et) in high yield along with the elimination of 2 equiv of dimethylamine or diethylamine, respectively. Interestingly, while changing the solvent from Et(2)O to CH(2)Cl(2), the complex Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))][C(4)H(2)N(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))]Cl (5) is produced by undergoing C-Cl bond cleavage. Furthermore, reaction of either 3 or 4 with 1 or 2 equiv of PhNCS or PhNCO yields Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NMe(2))[PhNC(NMe(2))S] (6), Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NEt(2))[PhNC(NEt(2))O] (7) and Zr[C(4)H(2)N(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))][PhNC(NEt(2))O](3) (8), respectively. All the aforementioned complexes were characterized by (1)H and (13)C NMR spectrometry and the molecular structures of 5, 6, and 8 have been determined by single-crystal X-ray diffractometry. Complexes 4, 5, and 7 initiated the ethylene polymerization in the presence of MAO as the co-catalyst.

9.
Chem Commun (Camb) ; 48(30): 3668-70, 2012 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-22395194

RESUMEN

Stereoregular vinyl polymers, poly(2-vinyl pyridine)s (P2VPs), were synthesized to examine the tacticity effect on the induced circular dichroism (ICD) via association with chiral acids. The ICD was found to be strongly dependent on the isotacticity of the P2VPs and the acidity of chiral acid in addition to its bulkiness.


Asunto(s)
Polivinilos/síntesis química , Dicroismo Circular , Peso Molecular , Polivinilos/química , Espectrofotometría Ultravioleta , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...