Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Front Vet Sci ; 11: 1362379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756510

RESUMEN

Introduction: Angiotensin-converting enzyme 2 (ACE2) played an important role in the renin-angiotensin-aldosterone system (RAAS) and it was proved to be renoprotective in renal disease. Urinary angiotensin-converting enzyme 2 (uACE2) has been shown to reflect renal injury in human and experimental studies, but its role in feline kidney disease remains unknown. Aims: Our objectives involve comparing uACE2 concentrations and activities in cats across CKD stages with healthy controls, investigating the relationship between uACE2 concentrations, activities, and clinicopathological data in feline CKD patients, and assessing the predictive abilities of both for CKD progression. Methods: A retrospective, case-control study. The concentration and activity of uACE2 were measured by commercial ELISA and fluorometric assay kits, respectively. The concentration was adjusted to give uACE2 concentration-to-creatinine ratios (UACCRs). Results: In total, 67 cats consisting of 24 control and 43 chronic kidney disease (CKD), including 24 early-stage CKD and 19 late-stage CKD, were enrolled in this study. UACCR values were significantly higher in both early-stage (2.100 [1.142-4.242] x 10-6) and late-stage feline CKD (4.343 [2.992-5.0.71] x 10-6) compared to healthy controls (0.894 [0.610-1.076] x 10-6; p < 0.001), and there was also significant difference between-early stage group and late-stage group (p = 0.026). Urinary ACE2 activity (UAA) was significantly lower in CKD cats (1.338 [0.644-2.755] x pmol/min/ml) compared to the healthy cats (7.989 [3.711-15.903] x pmol/min/ml; p < 0.001). UACCR demonstrated an independent, positive correlation with BUN (p < 0.001), and UAA exhibited an independent, negative correlation with plasma creatinine (p < 0.001). Both UACCR and UAA did not yield significant results in predicting CKD progression based on the ROC curve analysis. Conclusion and clinical importance: uACE2 concentration and activity exhibit varying changes as renal function declines, particularly in advanced CKD cats.

2.
J Ovarian Res ; 17(1): 66, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504307

RESUMEN

BACKGROUND: Quiescin sulfhydryl oxidase 2 (QSOX2) is a flavin adenine dinucleotide-dependent sulfhydryl oxidase that is known to be involved in protein folding, cell growth regulation, and redox state modification through oxidative activities. Earlier studies demonstrated the tissue and cellular localization of QSOX2 in the male reproductive tract, as well as the highly-regulated mechanism of QSOX2 protein synthesis and expression through the coordinated action of testosterone and epididymal-enriched amino acid, glutamate. However, the presence and the functions of QSOX2 in female reproduction are unknown. In this study, we applied the Cre-loxP gene manipulation system to generate the heterozygous and homozygous Qsox2 knockout mice and examined its effects on ovarian function. RESULTS: We demonstrated that QSOX2 was detected in the follicle-supporting cells (granulosa and cumulus cells) of ovarian follicles of all stages but was absent in the corpus luteum, suggesting its supportive role in folliculogenesis. In comparison with reproductive organogenesis in wild-type mice, there was no difference in testicular and epididymal structure in male Qsox2 knockout; however, Qsox2 knockout disrupted the regular ovulation process in female mice as a drastic decrease in the formation of the corpus luteum was detected, and no pregnancy was achieved when mating males with homozygous Qsox2 knockout females. RNAseq analyses further revealed that Qsox2 knockout altered critical signaling pathways and genes that are responsible for maintaining ovarian functions. CONCLUSION: Our data demonstrated for the first time that Qsox2 is critical for ovarian function in mice.


Asunto(s)
Células de la Granulosa , Oxidorreductasas , Tamoxifeno , Femenino , Ratones , Masculino , Animales , Células de la Granulosa/metabolismo , Tamoxifeno/farmacología , Tamoxifeno/metabolismo , Ovario , Ovulación , Ratones Noqueados
3.
Int J Nanomedicine ; 18: 4313-4327, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576465

RESUMEN

Introduction: Cisplatin, a commonly used anticancer compound, exhibits severe off-target organ toxicity. Due to its wide application in cancer treatment, the reduction of its damage to normal tissue is an imminent clinical need. Cisplatin-induced testicular oxidative stress and damage lead to male sub- or infertility. Despite earlier studies showing that the natural polyphenol extracts honokiol serve as the free radical scavenger that reduces the accumulation of intracellular free radicals, whether honokiol exhibits direct effects on the testis and sperm is unclear. Thus, the aim of the current study is to investigate the direct effects of honokiol on testicular recovery and sperm physiology. Methods: We encapsulated this polyphenol antioxidation compound into liposome-based nanoparticles (nHNK) and gave intraperitoneally to mice at a dosage of 5 mg/kg body mass every other day for consecutive 6 weeks. Results: We showed that nHNK promotes MDC1-53bp1-associated non-homologous DNA double-strand break repair signaling pathway that minimizes cisplatin-induced DNA damage. This positive effect restores spermatogenesis and allows the restructuring of the multi-spermatogenic layers in the testis. By reducing mitochondrial oxidative damage, nHNK also protects sperm mitochondrial structure and maintains both testicular and sperm ATP production. By a yet-to-identify mechanism, nHNK restores sperm calcium influx at the sperm midpiece and tail, which is essential for sperm hypermotility and their interaction with the oocyte. Discussion: Taken together, the nanoparticulated antioxidant counteracts cisplatin-induced male fertility defects and benefits patients undertaking cisplatin-based chemotherapy. These data may allow the reintroduction of cisplatin for systemic applications in patients at clinics with reduced testicular toxicity.


Asunto(s)
Antioxidantes , Nanopartículas , Masculino , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cisplatino/farmacología , Calcio/metabolismo , Semen/metabolismo , Espermatozoides , Testículo , Reparación del ADN , Estrés Oxidativo , Fertilidad
4.
Gene ; 881: 147643, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37453721

RESUMEN

Hirschsprung disease (HSCR) is a congenital disorder of functional bowel obstruction due to the absence of enteric ganglia in distal bowel. Different L1cam variants were reportedly associated with L1cam syndrome and HSCR, whose phenotypes lacked predictable relevance to their genotypes. Using next-generation sequencing (NGS), we found an L1CAM de novo frameshift mutation in a female with mild hydrocephalus and skip-type HSCR. A nearly identical L1cam variant was introduced into FVB/NJ mice via the CRISPR-EZ method. A silent mutation was created via ssODN to gain an artificial Ncol restriction enzyme site for easier genotyping. Six L1cam protein-coding alternative transcripts were quantitatively measured. Immunofluorescence staining with polyclonal and monoclonal L1cam antibodies was used to characterize L1cam isoform proteins in enteric ganglia. Fifteen mice, seven males and eight females, generated via CRISPR-EZ, were confirmed to carry the L1cam frameshift variant, resulting in a premature stop codon. There was no prominent hydrocephalus nor HSCR-like presentation in these mice, but male infertility was noticed after observation for three generations in a total of 176 mice. Full-length L1cam transcripts were detected at a very low level in the intestinal tissues and almost none in the brain of these mice. Alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Immunofluorescence confirmed no fulllength L1cam protein in enteric ganglia. These shorter L1cam isoform proteins might play a role in protecting L1cam knockdown mice from HSCR.


Asunto(s)
Enfermedad de Hirschsprung , Hidrocefalia , Molécula L1 de Adhesión de Célula Nerviosa , Animales , Femenino , Masculino , Ratones , Enfermedad de Hirschsprung/genética , Hidrocefalia/genética , Intestinos , Molécula L1 de Adhesión de Célula Nerviosa/genética , Isoformas de Proteínas
5.
Biomedicines ; 10(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35453560

RESUMEN

Being one of the renal replacement therapies, peritoneal dialysis (PD) maintains around 15% of end-stage kidney disease patients' lives; however, complications such as peritoneal fibrosis and ultrafiltration failure during long-term PD compromise its application. Previously, we established a sodium hypochlorite (NaClO)-induced peritoneal fibrosis porcine model, which helped to bridge the rodent model toward pre-clinical human peritoneal fibrosis research. In this study, the peritoneal equilibration test (PET) was established to evaluate instant functional changes in the peritoneum in the pig model. Similar to observations from long-term PD patients, increasing small solutes transport and loss of sodium sieving were observed. Mechanistic investigation from both in vivo and in vitro data suggested that disruption of cytoskeleton induced by excessive reactive oxygen species defected intracellular transport of aquaporin 1, this likely resulted in the disappearance of sodium sieving upon PET. Functional interference of aquaporin 1 on free water transport would result in PD failure in patients.

6.
J Reprod Dev ; 68(3): 198-208, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35228412

RESUMEN

Spermatozoa acquire fertilization ability through post-translational modifications. These membrane surface alterations occur in various segments of the epididymis. Quiescin sulfhydryl oxidases, which catalyze thiol-oxidation reactions, are involved in disulfide bond formation, which is essential for sperm maturation, upon transition and migration in the epididymis. Using castration and azoospermia transgenic mouse models, in the present study, we showed that quiescin sulfhydryl oxidase 1 (QSOX1) protein expression and secretion are positively correlated with the presence of testosterone and sperm cells. A two-dimensional in vitro epithelium-sperm co-culture system provided further evidence in support of the notion that both testosterone and its dominant metabolite, 5α-dihydrotestosterone, promote epididymal QSOX1 secretion. We also demonstrated that immature caput spermatozoa, but not mature cauda sperm cells, exhibited great potential to stimulate QSOX1 secretion in vitro, suggesting that sperm maturation is a key regulatory factor for mouse epididymal QSOX1 secretion. Proteomic analysis identified 582 secretory proteins from the co-culture supernatant, of which 258 were sperm-specific and 154 were of epididymal epithelium-origin. Gene Ontology analysis indicated that these secreted proteins exhibit functions known to facilitate sperm membrane organization, cellular activity, and sperm-egg recognition. Taken together, our data demonstrated that testosterone and sperm maturation status are key regulators of mouse epididymal QSOX1 protein expression and secretion.


Asunto(s)
Epidídimo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Espermatozoides , Animales , Técnicas de Cocultivo , Epidídimo/citología , Epidídimo/enzimología , Epidídimo/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Masculino , Ratones , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Proteómica , Espermatozoides/citología , Espermatozoides/enzimología , Espermatozoides/metabolismo , Testosterona/metabolismo
7.
iScience ; 24(10): 103167, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34667943

RESUMEN

A flavin-dependent enzyme quiescin Q6 sulfhydryl oxidase 1 (QSOX1) catalyzes the oxidation of thiol groups into disulfide bonds. QSOX1 is prominently expressed in the seminal plasma. However, its role in male reproduction is elusive. Here, we purified the secreted form of QSOX1, i.e., QSOX1c, from mouse seminal vesicle secretions and revealed for the first time its function involved in sperm physiology. Exogenous addition of QSOX1c time-dependently promoted the in vitro aggregation of thiol-rich, oxidative stressed, and apoptotic mouse and human sperm cells. Also, in vivo aggregated sperm cells collected from mouse uterine and human ejaculates also showed high levels of QSOX1c, intracellular reactive oxygen species, annexin V, and free thiols. In summary, our studies demonstrated that QSOX1c could agglutinate spermatozoa susceptible to free radical attack and apoptosis. This characteristic may provide an opportunity to separate defective sperm cells and improve sperm quality before artificial insemination in humans and animals.

8.
Reproduction ; 161(5): 593-602, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33784244

RESUMEN

The epididymis is an androgen-responsive organ, whose structure and functions are modulated by the coordination between androgen and epididymal cues. Highly regulated molecular interaction within the epididymis is required to support viable sperm development necessary for subsequent fertilization. In the present study, we extended our earlier findings on a promising epididymal protein, quiescin sulfhydryl oxidase 2 (QSOX2), and demonstrated a positive correlation between testosterone and QSOX2 protein synthesis through the use of loss- and restore-of-function animal models. Moreover, based on transcriptomic analyses and 2D culture system, we determined that an additional polarized effect of glutamate is indispensable for the regulatory action of testosterone on QSOX2 synthesis. In conclusion, we propose noncanonical testosterone signaling supports epididymal QSOX2 protein synthesis, providing a novel perspective on the regulation of sperm maturation within the epididymis.


Asunto(s)
Epidídimo/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Maduración del Esperma , Testosterona/farmacología , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Proteínas Portadoras/metabolismo , Epidídimo/citología , Epidídimo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética
9.
J Cell Biochem ; 122(6): 653-666, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33469950

RESUMEN

Lysozyme (LYZ) c-like proteins are primarily present in the testis and epididymis of male reproductive tissues. Here, we report a novel member of the c-type LYZ family, the seminal vesicle-secreted LYZ c-like protein (SVLLP). Three forms of SVLLP were purified from mouse seminal vesicle secretions and characterized as glycoproteins with the same protein core but different N-linked glycans. SVLLP is structurally similar to c-type LYZ proteins. Only one of the 20 invariant residues was altered in the consensus sequence of c-type LYZs; however, the changed residue (N53S) is one of two essential catalytic residues. LYZ activity assays demonstrated that the three glycoforms of SVLLP lacked enzyme activity. SVLLP is primarily expressed in seminal vesicles. Immunohistochemistry revealed that it occurs in the luminal fluid and mucosal epithelium of the seminal vesicles. Testosterone is not the primary regulator for its expression in the seminal vesicle. SVLLP binds to sperm and suppresses bovine serum albumin-induced sperm capacitation, inhibits the acrosome reaction, and blocks sperm-oocyte interactions in vitro, suggesting that SVLLP is a sperm capacitation inhibitor.


Asunto(s)
Vesículas Seminales/metabolismo , Capacitación Espermática/fisiología , Espermatozoides/metabolismo , Reacción Acrosómica/efectos de los fármacos , Animales , Transporte Biológico/efectos de los fármacos , Western Blotting , AMP Cíclico/metabolismo , Inmunohistoquímica , Masculino , Ratones , Muramidasa/efectos de los fármacos , Muramidasa/metabolismo , Vesículas Seminales/efectos de los fármacos , Capacitación Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testosterona/farmacología
10.
Animals (Basel) ; 10(12)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291566

RESUMEN

A tetrazolium salt, 2-[2-methoxy-4-nitrophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H-tetrazolium (WST-8), has been used widely to determine cell viability; however, its application in the field of reproduction is still limited due to this assay merely providing information regarding cell viability. The aim of this study was to correlate the WST-8 reduction rate with various sperm quality-related parameters (i.e., sperm viability, motility, progressive motility, acrosome integrity and mitochondria integrity) in order to provide a rapid, reliable and affordable assessment for boar semen quality evaluation. Using different ratios of active/damaged sperm cells, we first validated our sample preparations by standard flow cytometry and computer-assisted sperm analysis. Further analyses demonstrated that the most efficient experimental condition for obtaining a reliable prediction model was when sperm concentration reached 300 × 106 cells/mL with the semen/cell-counting kit-8 (CCK-8®) ratio of 200/10 and incubated time of 20 min. Under this set up, the WST-8 reduction rate (differences on optic density reading value, ΔOD at 450 nm) and sperm parameters were highly correlated (p < 0.01) for all sperm parameters evaluated. In the case of limited semen samples, a minimal semen concentration at 150 × 106 cells/mL with the semen/CCK-8® ratio of 200/20 and incubation time for 30 min could still provide reliable prediction of sperm parameters using the WST-8 assay. Our data provide strong evidence for the first time that the WST-8 assay could be used to evaluate boar semen quality with great potential to be applied to different mammalian species.

11.
Animals (Basel) ; 10(10)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036420

RESUMEN

Semen collection can be achieved via hand penile massage or rectal stimulation using electro-ejaculation methods. Traditional electro-ejaculation procedure applied relatively high voltage of 3-15 volts with a maximum current of 900 mA. However, these manipulations often result in great stress and discomforts in animals. In this study, we showed low-voltage electro-ejaculation procedure using 2-3 volts with a maximum current of 500 mA can efficiently stimulated ejaculations in zoo captive lanyu miniature pigs with a high success rate of 81.3% (13/16). Besides normal semen properties (semen volume, pH, sperm concentration), we demonstrated that low-voltage electro-ejaculation caused less stress in the animals, and sperm cells obtained via low-voltage electro-ejaculation exhibit low abnormality (10.3%), high viability (84.3%), motility (75.7%), progressive motility (63.7%), and acrosome integrity (88%). However, cryopreservation protocol used in the current study requires further optimization, as sperm mitochondrial function was partially compromised during freezing procedures. Taken together, we demonstrated in this study that a low-voltage electro-ejaculation approach can be used to obtain quality sperm cells from zoo captive lanyu miniature pig with less physical stress during electro-ejaculation procedure.

12.
Antioxidants (Basel) ; 9(8)2020 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-32784851

RESUMEN

Cisplatin, despite its anti-cancer ability, exhibits severe testicular toxicities when applied systemically. Due to its wide application in cancer treatment, reduction of its damages to normal tissue is an imminent clinical need. Here we evaluated the effects of honokiol, a natural lipophilic polyphenol compound, on cisplatin-induced testicular injury. We showed in-vitro and in-vivo that nanosome-encapsulated honokiol attenuated cisplatin-induced DNA oxidative stress by suppressing intracellular reactive oxygen species production and elevating gene expressions of mitochondrial antioxidation enzymes. Nanosome honokiol also mitigated endoplasmic reticulum stress through down regulation of Bip-ATF4-CHOP signaling pathway. Additionally, this natural polyphenol compound diminished cisplatin-induced DNA breaks and cellular apoptosis. The reduced type I collagen accumulation in the testis likely attributed from inhibition of TGFß1, αSMA and ER protein TXNDC5 protein expression. The combinatorial beneficial effects better preserve spermatogenic layers and facilitate repopulation of sperm cells. Our study renders opportunity for re-introducing cisplatin to systemic anti-cancer therapy with reduced testicular toxicity and restored fertility.

13.
Sci Rep ; 10(1): 11496, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661265

RESUMEN

Patients with kidney failure rely on life-saving peritoneal dialysis to facilitate waste exchange and maintain homeostasis of physical conditions. However, peritoneal dialysis often results in peritoneal fibrosis and organ adhesion that subsequently compromise the efficiency of peritoneal dialysis and normal functions of visceral organs. Despite rodent models provide clues on the pathogenesis of peritoneal fibrosis, no current large animal model which shares high degree of physiological and anatomical similarities to human is available, limiting their applications on the evaluation of pre-clinical therapeutic efficacy. Here we established for the first time, hypochlorite-induced porcine model of peritoneal fibrosis in 5-week-old piglets. We showed that administration 15-30 mM hypochlorite, a dose- and time-dependent severity of peritoneal fibrosis characterized by mesothelium fragmentation, αSMA+ myofibroblasts accumulation, organ surface thickening and type I collagen deposition were observed. We also demonstrated in vitro using human mesothelial cells that hypochlorite-induced fibrosis was likely due to necrosis, but not programmed apoptosis; besides, overexpression of IL1ß, CX3CL1 and TGFß on the peritoneal mesothelium in current model was detected, similar to observations from peritoneal dialysis-induced peritoneal fibrosis in human patients and earlier reported mouse model. Moreover, our novel antemortem evaluation using laparoscopy provided instant feedback on the progression of organ fibrosis/adhesion which allows immediate adjustments on treatment protocols and strategies in alive individuals that can not and never be performed in other animal models.


Asunto(s)
Quimiocina CX3CL1/genética , Interleucina-1beta/genética , Fibrosis Peritoneal/genética , Factor de Crecimiento Transformador beta1/genética , Animales , Colágeno Tipo I/genética , Modelos Animales de Enfermedad , Células Epiteliales/patología , Humanos , Ácido Hipocloroso/toxicidad , Miofibroblastos/metabolismo , Miofibroblastos/patología , Diálisis Peritoneal , Fibrosis Peritoneal/inducido químicamente , Fibrosis Peritoneal/patología , Peritoneo/metabolismo , Peritoneo/patología , Transducción de Señal/genética , Porcinos
14.
Viruses ; 12(7)2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650357

RESUMEN

Papillomaviruses (PVs) usually cause benign proliferative lesions in the stratified epithelium of various animal species. However, some high-risk types of PVs have been proven to lead to malignant transformations. In dogs, several canine papillomaviruses (CPVs) have been identified in malignant lesions and are suggested as one of the risk factors for the development of squamous cell carcinomas (SCCs). In the present study, the full genomes of two CPV9 strains from recurrent SCCs of Dog 1 and skin viral papilloma (viral plaque) of Dog 2 were sequenced. Alignment of the two CPV9 sequences with the genome of the reference CPV9 strain (accession no. JF800656.1) derived from a solitary pigmented plaque was performed. Compared with the reference strain, a 27 bp in-frame insertion in the E1 gene was identified in both CPV9 strains in this study. In comparison with the CPV9 strains derived from benign lesions, the CPV9 from the SCCs of Dog 1 exhibited a 328 bp deletion at the 3' end of the E2 and spacer sequence, which encoded a truncated deduced E2 protein and a chimeric E8^E2 protein. However, there was no difference in the mRNA expression levels of viral oncoproteins of E6 and E7 between the two CPV9 cases, suggesting that the oncogenesis of CPV9 for malignant transformation might be different from that of human papillomaviruses. The roles of E2 and E8^E2 deleted CPV9 in the oncogenesis of benign and malignant lesions should be further investigated.


Asunto(s)
Carcinoma de Células Escamosas/veterinaria , Papillomaviridae/genética , Infecciones por Papillomavirus/veterinaria , Neoplasias Cutáneas/veterinaria , Piel/virología , Secuenciación Completa del Genoma , Animales , Carcinoma de Células Escamosas/virología , ADN Viral/genética , Enfermedades de los Perros/virología , Perros , Genoma Viral , Genómica , Masculino , Recurrencia Local de Neoplasia/veterinaria , Recurrencia Local de Neoplasia/virología , Papillomaviridae/clasificación , Papillomaviridae/patogenicidad , Infecciones por Papillomavirus/virología , Factores de Riesgo , Neoplasias Cutáneas/virología
15.
J Vet Intern Med ; 34(3): 1222-1230, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32324955

RESUMEN

BACKGROUND: Soluble-type hemojuvelin in serum and urine has been shown to be a biomarker in humans for chronic kidney disease (CKD) and acute kidney injury (AKI). No similar research has been conducted on cats. OBJECTIVE: Urine hemojuvelin (u-hemojuvelin) can be used as a clinical indicator for cats with various renal diseases. ANIMALS: Eighteen healthy cats, 10 cats with AKI, 21 cats with acute-on-chronic kidney injury (ACKI), and 45 cats with CKD were enrolled. METHODS: The expression profile of u-hemojuvelin was assessed by Western blot analysis, whereas the u-hemojuvelin concentration was measured using an in-house sandwich ELISA. Each cat's u-hemojuvelin-to-creatinine ratio (UHCR) also was determined. RESULTS: Significant differences were found in both u-hemojuvelin concentration and UHCR between the control cats and the other cats (AKI, CKD, ACKI). Both u-hemojuvelin and UHCR had high areas under the receiver operator curve (AUROC) for diagnoses of AKI (u-hemojuvelin, 0.885; UHCR, 0.982), CKD (hemojuvelin, 0.869; UHCR, 0.959), and ACKI (hemojuvelin, 0.910; UHCR, 1). Late stage (International Renal Interest Society, IRIS stages 3 and 4) CKD cats had significantly higher u-hemojuvelin concentration and UHCR than did early stage cats (IRIS stages 1 and 2). Both u-hemojuvelin and UHCR were significantly correlated with high blood urea nitrogen, plasma creatinine, and plasma phosphate concentrations and with low hematocrit (Hct), red blood cell (RBC) count, and plasma albumin concentration. The UHCR values were also significantly correlated with white blood cell count in blood. CONCLUSION: Both u-hemojuvelin and UHCR potentially can serve as diagnostic indicators for a range of renal diseases in cats.


Asunto(s)
Lesión Renal Aguda/veterinaria , Enfermedades de los Gatos/diagnóstico , Proteínas Ligadas a GPI/orina , Proteína de la Hemocromatosis/orina , Insuficiencia Renal Crónica/veterinaria , Lesión Renal Aguda/orina , Animales , Biomarcadores/orina , Enfermedades de los Gatos/orina , Gatos , Femenino , Masculino , Insuficiencia Renal Crónica/orina
16.
AMB Express ; 10(1): 20, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31993764

RESUMEN

The silkworm (Bombyx mori) and its pupae have been used for decades as nutritional additives and applied on the production of high-quality recombinant proteins via the baculovirus expression vector (BEV) system. The bio-capsule, the fat-rich body, and some body components of the silkworm pupae, which deliver antigens passing through the harsh environment of digestive tract and reaching the intestine, have been used as a vehicle for oral vaccines. In the present study, to develop a novel oral vaccine against porcine epidemic diarrhea virus (PEDV), the PEDV spike (S) protein was expressed in silkworm pupae and BmN cells using the BEV system. After three doses of oral administrations with 2-week intervals in pigs, neither PEDV S protein-specific humoral nor mucosal immune responses can be detected. The failure of eliciting the PEDV-specific immune response suggested that the BEV system using BmN cells or silkworm pupae as oral immunogen-expression vehicles was not able to overcome the immunological unresponsiveness, which was possibly due to gastrointestinal specific barriers and oral tolerance. Better strategies to enhance the delivery and immunogenicity of oral vaccines should be further investigated. Nevertheless, the PEDV S protein generated in the BmN cells and silkworm pupae herein provides an efficient tool to produce the recombinant antigen for future applications.

17.
AMB Express ; 9(1): 191, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31797149

RESUMEN

Bacillus licheniformis (B. licheniformis) is commonly used as probiotic and its secondary metabolites are attractive anti-microbial candidate. In the present study, we aimed to evaluate the antiviral activity of crude extracts from B. licheniformis against porcine epidemic diarrhea virus (PEDV), a highly contagious enveloped porcine virus that has caused great economic loss in pigs. In vivo, PEDV-infected piglets supplemented with air-dried solid state fermentative cultivate containing B. licheniformis-fermented products (BLFP) showed milder clinical symptoms and decreased viral shedding. Importantly, no significant systemic pathological lesions and no reduction in average daily gain were noted in pigs supplemented with the BLFP, which suggests that it is safe for use in pigs. In vitro experiments revealed that while B. licheniformis crude extracts exhibited no toxicity in Vero cells, co-cultivation of B. licheniformis crude extracts with PEDV significantly reduced viral infection and replication. Summarized current results suggest that the B. licheniformis-fermented products could be a novel candidate food additive for reducing the impact of PED on the swine industry.

18.
Cell Biosci ; 9: 95, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798829

RESUMEN

Along with the decline in oocyte quality, numerous defects such as mitochondrial insufficiency and the increase of mutation and deletion have been reported in oocyte mitochondrial DNA (mtDNA) following aging. Any impairments in oocyte mitochondrial function have negative effects on the reproduction and pregnancy outcome. It has been stated that infertility problems caused by poor quality oocytes in women with in vitro fertilization (IVF) and repeated pregnancy failures are associated with aging and could be overcome by transferring large amounts of healthy mitochondria. Hence, researches on biology, disease, and the therapeutic use of mitochondria continue to introduce some clinical approaches such as autologous mitochondrial transfer techniques. Following mitochondrial transfer, the amount of ATP required for aged-oocyte during fertilization, blastocyst formation, and subsequent embryonic development could be an alternative modality. These modulations improve the pregnancy outcome in women of high reproductive aging as well. In addition to overview the clinical studies using mitochondrial microinjection, this study provides a framework for future approaches to develop effective treatments and preventions of congenital transmission of mitochondrial DNA mutations/diseases to offspring. Mitochondrial transfer from ovarian cells and healthy oocytes could lead to improved fertility outcome in low-quality oocytes. The modulation of mitochondrial bioactivity seems to regulate basal metabolism inside target oocytes and thereby potentiate physiological activity of these cells while overcoming age-related infertility in female germ cells.

19.
BMC Vet Res ; 15(1): 421, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775769

RESUMEN

BACKGROUND: Since 2010, outbreaks of genotype 2 (G2) porcine epidemic diarrhea virus (PEDV) have caused high mortality in neonatal piglets and have had devastating impacts on the swine industry in many countries. A reliable serological assay for evaluating the PEDV-specific humoral and mucosal immune response is important for disease survey, monitoring the efficacy of immunization, and designing strategies for the prevention and control of PED. Two PEDV spike (S) glycoprotein-based indirect enzyme-linked immunosorbent assays (ELISAs) were developed using G2b PEDV-Pintung 52 (PEDV-PT) trimeric full-length S and truncated S1-501 proteins derived from the human embryonic kidney (HEK)-293 cell expression system. The truncated S1-501 protein was selected from a superior expressed stable cell line. The sensitivity and specificity of these two ELISAs were compared to immunostaining of G2b PEDV-PT infected cells and to a commercial nucleocapsid (N)-based indirect ELISA kit using a panel of PEDV negative and hyperimmune sera. RESULTS: The commercial N-based ELISA exhibited a sensitivity of 37%, a specificity of 100%, and a fair agreement (kappa = 0.37) with the immunostaining result. In comparison, the full-length S-based ELISA showed a sensitivity of 97.8%, a specificity of 94%, and an almost perfect agreement (kappa = 0.90) with the immunostaining result. Interestingly, the S1-501-based ELISA had even higher sensitivity of 98.9% and specificity of 99.1%, and an almost perfect agreement (kappa = 0.97) with the immunostaining result. A fair agreement (kappa< 0.4) was seen between the commercial N-based ELISA and either of our S-based ELISAs. However, the results of the full-length S-based ELISA shared an almost perfect agreement (kappa = 0.92) with that of S1-501-based ELISA. CONCLUSIONS: Both full-length S-based and S1-501-based ELISAs exhibit high sensitivity and high specificity for detecting antibodies against PEDVs. Considering the high protein yield and cost-effectiveness, the S1-501-based ELISA could be used as a reliable, sensitive, specific, and economic serological test for PEDV.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Ensayo de Inmunoadsorción Enzimática/veterinaria , Virus de la Diarrea Epidémica Porcina/inmunología , Enfermedades de los Porcinos/virología , Animales , Anticuerpos Antivirales/sangre , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Sensibilidad y Especificidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Porcinos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/inmunología
20.
Antioxidants (Basel) ; 8(10)2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31600935

RESUMEN

Cisplatin is a potent anti-cancer drug, however, its accompanied organ-toxicity hampers its clinical applications. Cisplatin-associated kidney injury is known to result from its accumulation in the renal tubule with excessive generation of reactive oxygen species. In this study, we encapsulated honokiol, a natural lipophilic polyphenol constituent extracted from Magnolia officinalis into nano-sized liposomes (nanosome honokiol) and examined the in vivo countering effects on cisplatin-induced renal injury. We observed that 5 mg/kg body weight. nanosome honokiol was the lowest effective dosage to efficiently restore renal functions of cisplatin-treated animals. The improvement is likely due the maintenance of cellular localization of cytochrome c and thus preserves mitochondria integrity and their redox activity, which as a consequence, reduced cellular oxidative stress and caspase 3-associated apoptosis. These improvements at the cellular level are later reflected on the observed reduction of kidney inflammation and fibrosis. In agreement with our earlier in vitro study showing protective effects of honokiol on kidney cell lines, we demonstrated further in the current study, that nanosuspension-formulated honokiol provides protective effects against cisplatin-induced chronic kidney damages in vivo. Our findings not only benefit cisplatin-receiving patients with reduced renal side effects, but also provide potential alternative and synergic solutions to improve clinical safety and efficacy of cisplatin treatment on cancer patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...