Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Psychol ; 15: 1256046, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375106

RESUMEN

Introduction: Cognitive behaviour therapy with exposure and response prevention is efficient in treating patients with obsessive-compulsive disorder (OCD). Nevertheless, it would be helpful for many patients to complement the therapeutic treatment with acceptance strategies to further increase the therapeutic benefit. The aim of the present study was to examine neurobiological responses to acceptance and intensification strategies during symptom provocation alongside the psychotherapeutic process. Method: A total of 23 patients diagnosed with OCD (subtype: washing/contamination fear) was instructed to utilise either an acceptance strategy (ACS) or an intensification strategy (INS) to cope with their emotional and cognitive reactions to personalised symptom-triggering and neutral pictures. Fourteen patients participated twice: at the beginning [T1] and at the end [T2] of an inpatient multimodal treatment including cognitive behaviour therapy with response prevention to assess functional variations. Results: For the contrast of T1 and T2, ACS showed increased brain activity in the left inferior frontal gyrus (IFG), left caudate body, and posterior cingulate gyrus (PCC). They also showed decreased activity in the left anterior insula. INS showed decreased activation in right lingual gyrus and right caudate body. At T2, ACS showed increased activation compared to INS in the left cerebrum: IFG, caudate nucleus, middle and superior temporal gyrus, and PCC/cuneus. For the comparison of T1 and T2, the ACS revealed increased brain activity in the left IFG, left caudate body, and right inferior parietal lobe. It showed decreased activity in the left anterior insula. The INS revealed decreased activity in right lingual gyrus and right caudate body.The psychometric questionnaires suggested that patients were able to reduce obsession, compulsion, and depression symptoms. Furthermore, patients rated the ACS as more useful for themselves compared with the INS. Conclusion: The increased left IFG activity using ACS (T1 vs. T2) could be interpreted as a better inhibitory top-down process, while the increased PCC response might be due to a better reappraisal strategy after therapy. ACS seems to mobilise neuronal activations under therapy, especially in the left hemisphere. Both strategies showed reductions in emotional networks as a neuronal correlate of therapy success. Overall, ACS may be more efficient than INS, as rated by the patients and as in accordance with neurobiological findings.

2.
Brain Sci ; 13(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36831842

RESUMEN

Cognitive impairment in patients suffering from schizophrenia spectrum disorders has been discussed as a strong predictor for multiple disease outcome variables, such as response to psychotherapy, stable relationships, employment, and longevity. However, the consistency and severity of cognitive deficits across multiple domains in individuals with first-episode and chronic psychotic disorders is still undetermined. We provide a comprehensive overview of primary research from the years 2009 to 2022. Based on a Cochrane risk assessment, a systematic synthesis of 51 out of 3669 original studies was performed. Impairment of cognitive functioning in patients diagnosed with first-episode psychotic disorders compared with healthy controls was predicted to occur in all assessed cognitive domains. Few overall changes were predicted for chronically affected patients relative to those in the first-episode stage, in line with previous longitudinal studies. Our research outcomes support the hypothesis of a global decrease in cognitive functioning in patients diagnosed with psychotic disorders, i.e., the occurrence of cognitive deficits in multiple cognitive domains including executive functioning, memory, working memory, psychomotor speed, and attention. Only mild increases in the frequency of cognitive impairment across studies were observed at the chronically affected stage relative to the first-episode stage. Our results confirm and extend the outcomes from prior reviews and meta-analyses. Recommendations for psychotherapeutic interventions are provided, considering the broad cognitive impairment already observed at the stage of the first episode. Based on the risk of bias assessment, we also make specific suggestions concerning the quality of future original studies.

3.
Neuroimage Clin ; 37: 103330, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36696807

RESUMEN

INTRODUCTION: Persistent postural-perceptual dizziness (PPPD) (ICD-11) and anxiety disorders (ANX) share behavioural symptoms like anxiety, avoidance, social withdrawal, hyperarousal, or palpitation as well as neurological symptoms like vertigo, stance and gait disorders. Furthermore, previous studies have shown a bidirectional link between vestibulo-spatial and anxiety neural networks. So far, there have been no neuroimaging-studies comparing these groups. OBJECTIVES: The aim of this explorative study was to investigate differences and similarities of neural correlates between these two patient groups and to compare their findings with a healthy control group. METHODS: 63 participants, divided in two patient groups (ANX = 20 and PPPD = 14) and two sex and age matched healthy control groups (HC-A = 16, HC-P = 13) were included. Anxiety and dizziness related pictures were shown during fMRI-measurements in a block-design in order to induce emotional responses. All subjects filled in questionnaires regarding vertigo (VSS, VHQ), anxiety (STAI), depression (BDI-II), alexithymia (TAS), and illness-perception (IPQ). After modelling the BOLD response with a standard canonical HRF, voxel-wise t-tests between conditions (emotional-negative vs neutral stimuli) were used to generate statistical contrast maps and identify relevant brain areas (pFDR < 0.05, cluster size >30 voxels). ROI-analyses were performed for amygdala, cingulate gyrus, hippocampus, inferior frontal gyrus, insula, supramarginal gyrus and thalamus (p ≤ 0.05). RESULTS: Patient groups differed from both HC groups regarding anxiety, dizziness, depression and alexithymia scores; ratings of the PPPD group and the ANX group did differ significantly only in the VSS subscale 'vertigo and related symptoms' (VSS-VER). The PPPD group showed increased neural responses in the vestibulo-spatial network, especially in the supramarginal gyrus (SMG), and superior temporal gyrus (STG), compared to ANX and HC-P group. The PPPD group showed increased neural responses compared to the HC-P group in the anxiety network including amygdala, insula, lentiform gyrus, hippocampus, inferior frontal gyrus (IFG) and brainstem. Neuronal responses were enhanced in visual structures, e.g. fusiform gyrus, middle occipital gyrus, and in the medial orbitofrontal cortex (mOFC) in healthy controls compared to patients with ANX and PPPD, and in the ANX group compared to the PPPD group. CONCLUSIONS: These findings indicate that neuronal responses to emotional information in the PPPD and the ANX group are comparable in anxiety networks but not in vestibulo-spatial networks. Patients with PPPD revealed a stronger neuronal response especially in SMG and STG compared to the ANX and the HC group. These results might suggest higher sensitivity and poorer adaptation processes in the PPPD group to anxiety and dizziness related pictures. Stronger activation in visual processing areas in HC subjects might be due to less emotional and more visual processing strategies.


Asunto(s)
Mareo , Vértigo , Humanos , Mareo/diagnóstico por imagen , Vértigo/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Trastornos de Ansiedad/diagnóstico por imagen , Corteza Cerebral , Ansiedad/diagnóstico por imagen
4.
Eur Arch Psychiatry Clin Neurosci ; 273(5): 1105-1128, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36048295

RESUMEN

Previous research suggests a broad range of deficits in major depressive disorder. Our goal was to update the current assumptions and investigate the extent of cognitive impairment in depression in the acute and remitted state. A systematic review of the existing literature between 2009 and 2019 assessing the risk of bias within the included studies was performed. Of the 42 articles reviewed, an unclear risk of bias was shown overall. The risk of bias mainly concerned the sample selection, inadequate remedial measures, as well as the lack of blinding the assessors. In the acute phase, we found strong support for impairment in processing speed, learning, and memory. Follow-up studies and direct comparisons revealed less pronounced deficits in remission, however, deficits were still present in attention, learning and memory, and working memory. A positive correlation between the number of episodes and cognitive deficits as well as depression severity and cognitive deficits was reported. The results also demonstrate a resemblance between the cognitive profiles in bipolar disorder and depression. Comparisons of depression with schizophrenia led to unclear results, at times suggesting an overlap in cognitive performance. The main findings support the global deficit hypothesis and align with results from prior meta-analyses and reviews. Recommendations for future research are also presented.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/complicaciones , Trastorno Depresivo Mayor/psicología , Depresión , Pruebas Neuropsicológicas , Disfunción Cognitiva/etiología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/psicología , Cognición
5.
Brain Sci ; 12(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36552173

RESUMEN

INTRODUCTION: Individual real-time functional magnetic resonance imaging neurofeedback (rtfMRI NF) might be a promising adjuvant in treating depressive symptoms. Further studies showed functional variations and connectivity-related changes in the dorsolateral prefrontal cortex (dlPFC) and the insular cortex. OBJECTIVES: The aim of this pilot study was to investigate whether individualized connectivity-based rtfMRI NF training can improve symptoms in depressed patients as an adjunct to a psychotherapeutic programme. The novel strategy chosen for this was to increase connectivity between individualized regions of interest, namely the insula and the dlPFC. METHODS: Sixteen patients diagnosed with major depressive disorder (MDD, ICD-10) and 19 matched healthy controls (HC) participated in a rtfMRI NF training consisting of two sessions with three runs each, within an interval of one week. RtfMRI NF was applied during a sequence of negative emotional pictures to modulate the connectivity between the dlPFC and the insula. The MDD REAL group was divided into a Responder and a Non-Responder group. Patients with an increased connectivity during the second NF session or during both the first and the second NF session were identified as "MDD REAL Responder" (N = 6). Patients that did not show any increase in connectivity and/or a decreased connectivity were identified as "MDD REAL Non-Responder" (N = 7). RESULTS: Before the rtfMRI sessions, patients with MDD showed higher neural activation levels in ventromedial PFC and the insula than HC; by contrast, HC revealed increased hemodynamic activity in visual processing areas (primary visual cortex and visual association cortex) compared to patients with MDD. The comparison of hemodynamic responses during the first compared to during the last NF session demonstrated significantly increased BOLD-activation in the medial orbitofrontal cortex (mOFC) in patients and HC, and additionally in the lateral OFC in patients with MDD. These findings were particularly due to the MDD Responder group, as the MDD Non-Responder group showed no increase in this region during the last NF run. There was a decrease of neural activation in emotional processing brain regions in both groups in the last NF run compared to the first: HC showed differences in the insula, parahippocampal gyrus, basal ganglia, and cingulate gyrus. Patients with MDD demonstrated deceased responses in the parahippocampal gyrus. There was no significant reduction of BDI scores after NF training in patients. CONCLUSIONS: Increased neural activation in the insula and vmPFC in MDD suggests an increased emotional reaction in patients with MDD. The activation of the mOFC could be associated with improved control-strategies and association-learning processes. The increased lOFC activation could indicate a stronger sensitivity to failed NF attempts in MDD. A stronger involvement of visual processing areas in HC may indicate better adaptation to negative emotional stimuli after repeated presentation. Overall, the rtfMRI NF had an impact on neurobiological mechanisms, but not on psychometric measures in patients with MDD.

6.
Clin EEG Neurosci ; : 15500594221138278, 2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36373604

RESUMEN

EEG neurofeedback (EEG-NFB) is a promising tool for the treatment of depressive disorders. However, many methods for the presentation of neurobiological reactions are available and it is widely unknown which of these feedback options are preferrable. Moreover, the influence of motivation on NFB training success is insufficiently studied. This study analyzed the efficacy of a novel EEG protocol (FC3/Pz) based on findings for NFB in depression. The role of four feedback options (Rumination, Anxiety, Meditation Master, Moving Art) from the NFB software "Brain Assistant" and motivation in EEG-based NFB performance was studied. Regarding "Anxiety" and "Rumination" visual feedback was used to evoke emotions; reinforcement (both negative and positive operant conditioning) was continuous. Regarding "Meditation Master" visual feedback was combined with continuous positive reinforcement. Regarding "Moving Art" 20-min calm nature films with neutral character were used; both visual and auditive feedback were applied. The reinforcement was positive and continuous. 13 healthy participants completed 15 EEG sessions over four months combining simultaneous frontal (aims: reduction of theta-, alpha- and high beta-activity, increase of low and mid beta-activity) and parietal training (aims: reduction of theta-, alpha 1-, mid and high beta-activity, increase of alpha 2- and low beta-activity). We observed significantly more pronounced percentage change in the expected direction for Anxiety than Moving Art (mean difference = 3.32; p = 0.003). The association between motivation and performance was non-significant. Based on these results we conclude that feedback with both negative and positive operant conditioning and emotion evoking effects should be preferred.

7.
Front Hum Neurosci ; 16: 820780, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308612

RESUMEN

Human fluid intelligence is closely linked to the sequential solving of complex problems. It has been associated with a distributed cognitive control or multiple-demand (MD) network, comprising regions of lateral frontal, insular, dorsomedial frontal, and parietal cortex. Previous neuroimaging research suggests that the MD network may orchestrate the allocation of attentional resources to individual parts of a complex task: in a complex target detection task with multiple independent rules, applied one at a time, reduced response to rule-critical events across the MD network in lower fluid intelligence was observed. This was in particular the case with increasing task complexity (i.e., larger sets of rules), and was accompanied by impairment in performance. Here, we examined the early spatiotemporal neural dynamics of this process in electroencephalography (EEG) source analyses using a similar task paradigm. Levels of fluid intelligence specifically predicted early neural responses in a left inferiorparietal MD region around 200-300 ms post stimulus onset. Evoked source amplitudes in left parietal cortex within this early time window also correlated with behavioural performance measures. Like in previous research, we observed impaired performance in lower fluid intelligence with increasing number of task rules. This links fluid intelligence to a process of attentional focus on those parts of a task that are most critical for the current behaviour. Within the MD system, our time re-resolved measures suggest that the left parietal cortex specifically impacts on early processes of attentional focus on task critical features. This is novel evidence on the neurocognitive correlates of fluid intelligence suggesting that individual differences are critically linked to an early process of attentional focus on task-relevant information, which is supported by left parietal MD regions.

8.
Eur Arch Psychiatry Clin Neurosci ; 272(4): 557-569, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34622344

RESUMEN

Identifying treatment options for patients with alcohol dependence is challenging. This study investigates the application of real-time functional MRI (rtfMRI) neurofeedback (NF) to foster resistance towards craving-related neural activation in alcohol dependence. We report a double-blind, placebo-controlled rtfMRI study with three NF sessions using alcohol-associated cues as an add-on therapy to the standard treatment. Fifty-two patients (45 male; 7 female) diagnosed with alcohol dependence were recruited in Munich, Germany. RtfMRI data were acquired in three sessions and clinical abstinence was evaluated 3 months after the last NF session. Before the NF training, BOLD responses and clinical data did not differ between groups, apart from anger and impulsiveness. During NF training, BOLD responses of the active group were decreased in medial frontal areas/caudate nucleus, and increased, e.g. in the cuneus/precuneus and occipital cortex. Within the active group, the down-regulation of neuronal responses was more pronounced in patients who remained abstinent for at least 3 months after the intervention compared to patients with a relapse. As BOLD responses were comparable between groups before the NF training, functional variations during NF cannot be attributed to preexisting distinctions. We could not demonstrate that rtfMRI as an add-on treatment in patients with alcohol dependence leads to clinically superior abstinence for the active NF group after 3 months. However, the study provides evidence for a targeted modulation of addiction-associated brain responses in alcohol dependence using rtfMRI.


Asunto(s)
Alcoholismo , Neurorretroalimentación , Alcoholismo/diagnóstico por imagen , Alcoholismo/terapia , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Proyectos Piloto
9.
J Neurosci ; 41(33): 7136-7147, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34244362

RESUMEN

Recognizing speech in background noise is a strenuous daily activity, yet most humans can master it. An explanation of how the human brain deals with such sensory uncertainty during speech recognition is to-date missing. Previous work has shown that recognition of speech without background noise involves modulation of the auditory thalamus (medial geniculate body; MGB): there are higher responses in left MGB for speech recognition tasks that require tracking of fast-varying stimulus properties in contrast to relatively constant stimulus properties (e.g., speaker identity tasks) despite the same stimulus input. Here, we tested the hypotheses that (1) this task-dependent modulation for speech recognition increases in parallel with the sensory uncertainty in the speech signal, i.e., the amount of background noise; and that (2) this increase is present in the ventral MGB, which corresponds to the primary sensory part of the auditory thalamus. In accordance with our hypothesis, we show, by using ultra-high-resolution functional magnetic resonance imaging (fMRI) in male and female human participants, that the task-dependent modulation of the left ventral MGB (vMGB) for speech is particularly strong when recognizing speech in noisy listening conditions in contrast to situations where the speech signal is clear. The results imply that speech in noise recognition is supported by modifications at the level of the subcortical sensory pathway providing driving input to the auditory cortex.SIGNIFICANCE STATEMENT Speech recognition in noisy environments is a challenging everyday task. One reason why humans can master this task is the recruitment of additional cognitive resources as reflected in recruitment of non-language cerebral cortex areas. Here, we show that also modulation in the primary sensory pathway is specifically involved in speech in noise recognition. We found that the left primary sensory thalamus (ventral medial geniculate body; vMGB) is more involved when recognizing speech signals as opposed to a control task (speaker identity recognition) when heard in background noise versus when the noise was absent. This finding implies that the brain optimizes sensory processing in subcortical sensory pathway structures in a task-specific manner to deal with speech recognition in noisy environments.


Asunto(s)
Mapeo Encefálico , Cuerpos Geniculados/fisiología , Colículos Inferiores/fisiología , Ruido , Percepción del Habla/fisiología , Tálamo/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos , Fonética , Proyectos Piloto , Tiempo de Reacción , Relación Señal-Ruido , Incertidumbre , Reconocimiento de Voz/fisiología
10.
Trends Neurosci ; 42(5): 307-309, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30871730

RESUMEN

Rhythmical brain activity around 5Hz can be observed in the prefrontal cortex under conditions requiring high levels of cognitive control. However, its temporal dynamics are still elusive. A recent research paper (Cooper et al. Neuroimage 2019;189:130-140) provides evidence that the temporal evolution of this frontal-midline theta activity reflects the style of cognitive control being implemented.


Asunto(s)
Electroencefalografía , Ritmo Teta , Cognición , Corteza Prefrontal , Tiempo de Reacción
11.
J Neurosci ; 39(9): 1720-1732, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30643025

RESUMEN

Developmental dyslexia is characterized by the inability to acquire typical reading and writing skills. Dyslexia has been frequently linked to cerebral cortex alterations; however, recent evidence also points toward sensory thalamus dysfunctions: dyslexics showed reduced responses in the left auditory thalamus (medial geniculate body, MGB) during speech processing in contrast to neurotypical readers. In addition, in the visual modality, dyslexics have reduced structural connectivity between the left visual thalamus (lateral geniculate nucleus, LGN) and V5/MT, a cerebral cortex region involved in visual movement processing. Higher LGN-V5/MT connectivity in dyslexics was associated with the faster rapid naming of letters and numbers (RANln), a measure that is highly correlated with reading proficiency. Here, we tested two hypotheses that were directly derived from these previous findings. First, we tested the hypothesis that dyslexics have reduced structural connectivity between the left MGB and the auditory-motion-sensitive part of the left planum temporale (mPT). Second, we hypothesized that the amount of left mPT-MGB connectivity correlates with dyslexics RANln scores. Using diffusion tensor imaging-based probabilistic tracking, we show that male adults with developmental dyslexia have reduced structural connectivity between the left MGB and the left mPT, confirming the first hypothesis. Stronger left mPT-MGB connectivity was not associated with faster RANln scores in dyslexics, but was in neurotypical readers. Our findings provide the first evidence that reduced cortico-thalamic connectivity in the auditory modality is a feature of developmental dyslexia and it may also affect reading-related cognitive abilities in neurotypical readers.SIGNIFICANCE STATEMENT Developmental dyslexia is one of the most widespread learning disabilities. Although previous neuroimaging research mainly focused on pathomechanisms of dyslexia at the cerebral cortex level, several lines of evidence suggest an atypical functioning of subcortical sensory structures. By means of diffusion tensor imaging, we here show that dyslexic male adults have reduced white matter connectivity in a cortico-thalamic auditory pathway between the left auditory motion-sensitive planum temporale and the left medial geniculate body. Connectivity strength of this pathway was associated with measures of reading fluency in neurotypical readers. This is novel evidence on the neurocognitive correlates of reading proficiency, highlighting the importance of cortico-subcortical interactions between regions involved in the processing of spectrotemporally complex sound.


Asunto(s)
Conectoma , Dislexia/fisiopatología , Cuerpos Geniculados/fisiopatología , Adulto , Corteza Auditiva/diagnóstico por imagen , Corteza Auditiva/fisiopatología , Dislexia/diagnóstico por imagen , Cuerpos Geniculados/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino
12.
J Neurosci ; 37(18): 4841-4847, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28408412

RESUMEN

Fluid intelligence has been associated with a distributed cognitive control or multiple-demand (MD) network, comprising regions of lateral frontal, insular, dorsomedial frontal, and parietal cortex. Human fluid intelligence is also intimately linked to task complexity, and the process of solving complex problems in a sequence of simpler, more focused parts. Here, a complex target detection task included multiple independent rules, applied one at a time in successive task epochs. Although only one rule was applied at a time, increasing task complexity (i.e., the number of rules) impaired performance in participants of lower fluid intelligence. Accompanying this loss of performance was reduced response to rule-critical events across the distributed MD network. The results link fluid intelligence and MD function to a process of attentional focus on the successive parts of complex behavior.SIGNIFICANCE STATEMENT Fluid intelligence is intimately linked to the ability to structure complex problems in a sequence of simpler, more focused parts. We examine the basis for this link in the functions of a distributed frontoparietal or multiple-demand (MD) network. With increased task complexity, participants of lower fluid intelligence showed reduced responses to task-critical events. Reduced responses in the MD system were accompanied by impaired behavioral performance. Low fluid intelligence is linked to poor foregrounding of task-critical information across a distributed MD system.


Asunto(s)
Cognición/fisiología , Retroalimentación Fisiológica/fisiología , Lóbulo Frontal/fisiología , Inteligencia/fisiología , Lóbulo Parietal/fisiología , Solución de Problemas/fisiología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Vías Nerviosas/fisiología
13.
J Cogn Neurosci ; 29(1): 114-124, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27575789

RESUMEN

problem-solving relies on a sequence of cognitive steps involving phases of task encoding, the structuring of solution steps, and their execution. On the neural level, metabolic neuroimaging studies have associated a frontal-parietal network with various aspects of executive control during numerical and nonnumerical problem-solving. We used EEG-MEG to assess whether frontal cortex contributes specifically to the early structuring of multiple solution steps. Basic multiplication ("3 × 4" vs. "3 × 24") was compared with an arithmetic sequence rule ("first add the two digits, then multiply the sum with the smaller digit") on two complexity levels. This allowed dissociating demands of early solution step structuring from early task encoding demands. Structuring demands were high for conditions that required multiple steps, that is, complex multiplication and the two arithmetic sequence conditions, but low for easy multiplication that mostly relied on direct memory retrieval. Increased right frontal activation in time windows between 300 and 450 msec was observed only for conditions that required multiple solution steps. General task encoding demands, operationalized by problem size (one-digit vs. two-digit numbers), did not predict these early frontal effects. In contrast, parietal effects occurred as a function of problem size irrespectively of structuring demands in early phases of task encoding between 100 and 300 msec. We here propose that frontal cortex subserves domain-general processes of problem-solving, such as the structuring of multiple solution steps, whereas parietal cortex supports number-specific early encoding processes that vary as a function of problem size.


Asunto(s)
Lóbulo Frontal/fisiología , Conceptos Matemáticos , Solución de Problemas/fisiología , Adulto , Electroencefalografía , Femenino , Humanos , Magnetoencefalografía , Masculino , Memoria/fisiología , Tiempo de Reacción
14.
J Cogn Neurosci ; 28(8): 1098-110, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27027542

RESUMEN

Arithmetic problem-solving can be conceptualized as a multistage process ranging from task encoding over rule and strategy selection to step-wise task execution. Previous fMRI research suggested a frontal-parietal network involved in the execution of complex numerical and nonnumerical tasks, but evidence is lacking on the particular contributions of frontal and parietal cortices across time. In an arithmetic task paradigm, we evaluated individual participants' "retrieval" and "multistep procedural" strategies on a trial-by-trial basis and contrasted those in time-resolved analyses using combined EEG and MEG. Retrieval strategies relied on direct retrieval of arithmetic facts (e.g., 2 + 3 = 5). Procedural strategies required multiple solution steps (e.g., 12 + 23 = 12 + 20 + 3 or 23 + 10 + 2). Evoked source analyses revealed independent activation dynamics within the first second of problem-solving in brain areas previously described as one network, such as the frontal-parietal cognitive control network: The right frontal cortex showed earliest effects of strategy selection for multistep procedural strategies around 300 msec, before parietal cortex activated around 700 msec. In time-frequency source power analyses, memory retrieval and multistep procedural strategies were differentially reflected in theta, alpha, and beta frequencies: Stronger beta and alpha desynchronizations emerged for procedural strategies in right frontal, parietal, and temporal regions as function of executive demands. Arithmetic fact retrieval was reflected in right prefrontal increases in theta power. Our results demonstrate differential brain dynamics within frontal-parietal networks across the time course of a problem-solving process, and analyses of different frequency bands allowed us to disentangle cortical regions supporting the underlying memory and executive functions.


Asunto(s)
Lóbulo Frontal/fisiología , Lóbulo Parietal/fisiología , Solución de Problemas/fisiología , Adulto , Electroencefalografía , Potenciales Evocados , Femenino , Humanos , Magnetoencefalografía , Masculino , Pruebas Neuropsicológicas , Tiempo de Reacción , Procesamiento de Señales Asistido por Computador
15.
Front Psychol ; 6: 1188, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26321997

RESUMEN

Mental arithmetic is a powerful paradigm to study problem solving using neuroimaging methods. However, the evaluation of task complexity varies significantly across neuroimaging studies. Most studies have parameterized task complexity by objective features such as the number size. Only a few studies used subjective rating procedures. In fMRI, we provided evidence that strategy self-reports control better for task complexity across arithmetic conditions than objective features (Tschentscher and Hauk, 2014). Here, we analyzed the relative predictive value of self-reported strategies and objective features for performance in addition and multiplication tasks, by using a paradigm designed for neuroimaging research. We found a superiority of strategy ratings as predictor of performance above objective features. In a Principal Component Analysis on reaction times, the first component explained over 90 percent of variance and factor loadings reflected percentages of self-reported strategies well. In multiple regression analyses on reaction times, self-reported strategies performed equally well or better than objective features, depending on the operation type. A Receiver Operating Characteristic (ROC) analysis confirmed this result. Reaction times classified task complexity better when defined by individual ratings. This suggests that participants' strategy ratings are reliable predictors of arithmetic complexity and should be taken into account in neuroimaging research.

16.
Neuroimage ; 92: 369-80, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24525170

RESUMEN

A number of previous studies have interpreted differences in brain activation between arithmetic operation types (e.g. addition and multiplication) as evidence in favor of distinct cortical representations, processes or neural systems. It is still not clear how differences in general task complexity contribute to these neural differences. Here, we used a mental arithmetic paradigm to disentangle brain areas related to general problem solving from those involved in operation type specific processes (addition versus multiplication). We orthogonally varied operation type and complexity. Importantly, complexity was defined not only based on surface criteria (for example number size), but also on the basis of individual participants' strategy ratings, which were validated in a detailed behavioral analysis. We replicated previously reported operation type effects in our analyses based on surface criteria. However, these effects vanished when controlling for individual strategies. Instead, procedural strategies contrasted with memory retrieval reliably activated fronto-parietal and motor regions, while retrieval strategies activated parietal cortices. This challenges views that operation types rely on partially different neural systems, and suggests that previously reported differences between operation types may have emerged due to invalid measures of complexity. We conclude that mental arithmetic is a powerful paradigm to study brain networks of abstract problem solving, as long as individual participants' strategies are taken into account.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Conceptos Matemáticos , Matemática , Red Nerviosa/fisiología , Solución de Problemas/fisiología , Tiempo de Reacción/fisiología , Adolescente , Mapeo Encefálico , Femenino , Humanos , Masculino , Adulto Joven
17.
Front Psychol ; 4: 50, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23407791

RESUMEN

Semantic knowledge is based on the way we perceive and interact with the world. However, the jury is still out on the question: to what degree are neuronal systems that subserve acquisition of semantic knowledge, such as sensory-motor networks, involved in its representation and processing? We will begin with a critical evaluation of the main behavioral and neuroimaging methods with respect to their capability to define the functional roles of specific brain areas. Any behavioral or neuroscientific measure is a conflation of representations and processes. Hence, a combination of behavioral and neurophysiological interactions as well as time-course information is required to define the functional roles of brain areas. This will guide our review of the empirical literature. Most research in this area has been done on semantics of concrete words, where clear theoretical frameworks for an involvement of sensory-motor systems in semantics exist. Most of this evidence still stems from correlational studies that are ambiguous with respect to the behavioral relevance of effects. Evidence for causal effects of sensory-motor systems on semantic processes is still scarce but evolving. Relatively few neuroscientific studies so far have investigated the embodiment of abstract semantics for words, numbers, and arithmetic facts. Here, some correlational evidence exists, but data on causality are mostly absent. We conclude that neuroimaging data, just as behavioral data, have so far not disentangled the fundamental link between process and representation. Future studies should therefore put more emphasis on the effects of task and context on semantic processing. Strong conclusions can only be drawn from a combination of methods that provide time-course information, determine the connectivity among poly- or amodal and sensory-motor areas, link behavioral with neuroimaging measures, and allow causal inferences. We will conclude with suggestions on how this could be accomplished in future research.

18.
Neuroimage ; 59(4): 3139-48, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22133748

RESUMEN

The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing.


Asunto(s)
Dedos/fisiología , Matemática , Corteza Motora/fisiología , Adulto , Femenino , Hábitos , Humanos , Masculino , Adulto Joven
19.
Exp Brain Res ; 190(4): 493-8, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18712369

RESUMEN

We studied how two different hand posture cues affect joint attention in normal observers. Visual targets appeared over lateralized objects, with different delays after centrally presented hand postures. Attention was cued by either hand direction or the congruency between hand aperture and object size. Participants pressed a button when they detected a target. Direction cues alone facilitated target detection following short delays but aperture cues alone were ineffective. In contrast, when hand postures combined direction and aperture cues, aperture congruency effects without directional congruency effects emerged and persisted, but only for power grips. These results suggest that parallel parameter specification makes joint attention mechanisms exquisitely sensitive to the timing and content of contextual cues.


Asunto(s)
Atención/fisiología , Fuerza de la Mano/fisiología , Postura/fisiología , Desempeño Psicomotor/fisiología , Adulto , Mano/fisiología , Humanos , Estimulación Luminosa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...