Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evolution ; 78(5): 951-963, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38416475

RESUMEN

Understanding what processes shape the formation of species' geographic range limits is one central objective linking ecology and evolutionary biology. One potentially key process is sexual selection; yet, theory examining how sexual selection could shape eco-evolutionary dynamics in marginal populations is still lacking. In species with separate sexes, range limits could be shaped by limitations in encountering mates at low densities. Sexual selection could therefore modulate mate limitation and resulting extinction-colonization dynamics at range margins, through evolution of mate encounter ability and/or mate competition traits, and their demographic consequences. We use a spatially explicit eco-genetic model to reveal how different forms of sexual selection can variably affect emerging range limits. Larger ranges emerged when sexual selection acted exclusively on traits increasing mate encounter probability, thus reducing female's mate limitation toward the range margins. In contrast, sexual selection via mate competition narrowed range limits due to increased trait-dependent mortality in males and elevated mate limitation for females. When mate encounter coevolved with mate competition, their combined effects on range limits depended on the mating system (polygyny vs. monogamy). Our results demonstrate that evolution of species' ranges may be importantly shaped by feedbacks between sexual selection and spatial population demography and dynamics.


Asunto(s)
Evolución Biológica , Selección Sexual , Animales , Femenino , Masculino , Preferencia en el Apareamiento Animal , Modelos Genéticos , Distribución Animal
2.
J Evol Biol ; 36(9): 1242-1254, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37497848

RESUMEN

Sexual selection on males is predicted to increase population fitness, and delay population extinction, when mating success negatively covaries with genetic load across individuals. However, such benefits of sexual selection could be counteracted by simultaneous increases in genome-wide drift resulting from reduced effective population size caused by increased variance in fitness. Resulting fixation of deleterious mutations could be greatest in small populations, and when environmental variation in mating traits partially decouples sexual selection from underlying genetic variation. The net consequences of sexual selection for genetic load and population persistence are therefore likely to be context dependent, but such variation has not been examined. We use a genetically explicit individual-based model to show that weak sexual selection can increase population persistence time compared to random mating. However, for stronger sexual selection such positive effects can be overturned by the detrimental effects of increased genome-wide drift. Furthermore, the relative strengths of mutation-purging and drift critically depend on the environmental variance in the male mating trait. Specifically, increasing environmental variance caused stronger sexual selection to elevate deleterious mutation fixation rate and mean selection coefficient, driving rapid accumulation of drift load and decreasing population persistence times. These results highlight an intricate balance between conflicting positive and negative consequences of sexual selection on genetic load, even in the absence of sexually antagonistic selection. They imply that environmental variances in key mating traits, and intrinsic genetic drift, should be properly factored into future theoretical and empirical studies of the evolution of population fitness under sexual selection.


Asunto(s)
Preferencia en el Apareamiento Animal , Selección Sexual , Animales , Masculino , Carga Genética , Mutación , Selección Genética
3.
Evolution ; 76(3): 636-648, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34964487

RESUMEN

Female mating preferences for exaggerated male display traits are commonplace. Yet, comprehensive understanding of the evolution and persistence of costly female preference through indirect (Fisherian) selection in finite populations requires some explanation for the persistence of additive genetic variance (Va ) underlying sexual traits, given that directional preference is expected to deplete Va in display and hence halt preference evolution. However, the degree to which Va , and hence preference-display coevolution, may be prolonged by spatially variable sexual selection arising solely from limited gene flow and genetic drift within spatially structured populations has not been examined. Our genetically and spatially explicit model shows that spatial population structure arising in an ecologically homogeneous environment can facilitate evolution and long-term persistence of costly preference given small subpopulations and low dispersal probabilities. Here, genetic drift initially creates spatial variation in female preference, leading to persistence of Va in display through "migration-bias" of genotypes maladapted to emerging local sexual selection, thus fueling coevolution of costly preference and display. However, costs of sexual selection increased the probability of subpopulation extinction, limiting persistence of high preference-display genotypes. Understanding long-term dynamics of sexual selection systems therefore requires joint consideration of coevolution of sexual traits and metapopulation dynamics.


Asunto(s)
Preferencia en el Apareamiento Animal , Selección Genética , Animales , Evolución Biológica , Femenino , Flujo Génico , Masculino , Dinámica Poblacional , Reproducción/genética
4.
Sci Data ; 6(1): 316, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831730

RESUMEN

We present The Odonate Phenotypic Database (OPD): an online data resource of dragonfly and damselfly phenotypes (Insecta: Odonata). Odonata is a relatively small insect order that currently consists of about 6400 species belonging to 32 families. The database consists of multiple morphological, life-history and behavioral traits, and biogeographical information collected from literature sources. We see taxon-specific phenotypic databases from Odonata and other organismal groups as becoming an increasing valuable resource in comparative studies. Our database has phenotypic records for 1011 of all 6400 known odonate species. The database is accessible at http://www.odonatephenotypicdatabase.org/, and a static version with an information file about the variables in the database is archived at Dryad.


Asunto(s)
Bases de Datos Factuales , Odonata/clasificación , Animales , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...