Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 23(1): 35-46, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37735104

RESUMEN

Small molecule inhibitors of Bruton's tyrosine kinase (BTK) have been approved for the treatment of multiple B-cell malignancies and are being evaluated for autoimmune and inflammatory diseases. Various BTK inhibitors (BTKi) have distinct potencies, selectivity profiles, and binding modes within the ATP-binding site. On the basis of the latter feature, BTKis can be classified into those that occupy the back-pocket, H3 pocket, and the hinge region only. Hypothesizing that differing binding modes may have differential impact on the B-cell receptor (BCR) signaling pathway, we evaluated the activities of multiple BTKis in B-cell lymphoma models in vitro and in vivo. We demonstrated that, although all three types of BTKis potently inhibited BTK-Y223 autophosphorylation and phospholipase C gamma 2 (PLCγ2)-Y1217 transphosphorylation, hinge-only binders were defective in inhibiting BTK-mediated calcium mobilization upon BCR activation. In addition, PLCγ2 activation was effectively blocked by back-pocket and H3 pocket binders but not by hinge-only binders. Further investigation using TMD8 cells deficient in Rac family small GTPase 2 (RAC2) revealed that RAC2 functioned as a bypass mechanism, allowing for residual BCR signaling and PLCγ2 activation when BTK kinase activity was fully inhibited by the hinge-only binders. These data reveal a kinase activity-independent function of BTK, involving RAC2 in transducing BCR signaling events, and provide mechanistic rationale for the selection of clinical candidates for B-cell lymphoma indications.


Asunto(s)
Linfoma de Células B , Proteínas Tirosina Quinasas , Humanos , Fosfolipasa C gamma/metabolismo , Transducción de Señal , Agammaglobulinemia Tirosina Quinasa , Linfoma de Células B/tratamiento farmacológico , Receptores de Antígenos de Linfocitos B/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
2.
Curr Oncol ; 29(12): 9928-9955, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36547195

RESUMEN

The aim of this project was to determine research priorities, barriers, and enablers for adult primary brain tumour research in Australia and New Zealand. Consumers, health professionals, and researchers were invited to participate in a two-phase modified Delphi study. Phase 1 comprised an initial online survey (n = 91) and then focus groups (n = 29) which identified 60 key research topics, 26 barriers, and 32 enablers. Phase 2 comprised two online surveys to (1) reduce the list to 37 research priorities which achieved consensus (>75% 2-point agreement) and had high mean importance ratings (n = 116 participants) and (2) determine the most important priorities, barriers, and enablers (n = 90 participants). The top ten ranked research priorities for the overall sample and sub-groups (consumers, health professionals, and researchers) were identified. Priorities focused on: tumour biology, pre-clinical research, clinical and translational research, and supportive care. Variations were seen between sub-groups. The top ten barriers to conducting brain tumour research related to funding and resources, accessibility and awareness of research, collaboration, and process. The top ten research enablers were funding and resources, collaboration, and workforce. The broad list of research priorities identified by this Delphi study, together with how consumers, health professionals, and researchers prioritised items differently, and provides an evidence-based research agenda for brain tumour research that is needed across a wide range of areas.


Asunto(s)
Personal de Salud , Investigación , Humanos , Adulto , Nueva Zelanda , Técnica Delphi , Australia
3.
Bioorg Med Chem Lett ; 72: 128843, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35688367

RESUMEN

Cystic fibrosis (CF) is an autosomal recessive disease resulting from mutations on both copies of the CFTR gene. Phenylalanine deletion at position 508 of the CFTR protein (F508del-CFTR) is the most frequent mutation in CF patients. Currently, the most effective treatments of CF use a dual or triple combination of CFTR correctors and potentiators. In triple therapy, two correctors (C1 and C2) and a potentiator are employed. Herein, we describe the identification and exploration of the SAR of a series of 4-aminopyrrolidine-2-carboxylic acid C2 correctors of CFTR to be used in conjunction with our existing C1 corrector series for the treatment of CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Benzodioxoles , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Mutación , Prolina/análogos & derivados , Relación Estructura-Actividad
4.
Am J Cancer Res ; 11(6): 2911-2927, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249435

RESUMEN

Acute myeloid leukemia (AML) is a highly heterogenous and aggressive disease with a poor prognosis, necessitating further improvements in treatment therapies. Recently, several targeted therapies have become available for specific AML populations. To identify potential new therapeutic targets for AML, we analyzed published genome wide CRISPR-based screens to generate a gene essentiality dataset across a panel of 14 human AML cell lines while eliminating common essential genes through integration analysis with core fitness genes among 324 human cancer cell lines and DepMap databases. The key glutathione metabolic enzyme, glutamate-cysteine ligase catalytic subunit (GCLC), met the selection threshold. Using CRISPR knockout, GCLC was confirmed to be essential for the cell growth, survival, clonogenicity, and leukemogenesis in AML cells but was comparatively dispensable for normal hematopoietic stem and progenitor cells (HSPCs), indicating that GCLC is a potential therapeutic target for AML. In addition, we evaluated the essentiality of GCLC in solid tumors and demonstrated that GCLC represents a synthetic lethal target for ARID1A-deficient ovarian and gastric cancers.

5.
Neurooncol Adv ; 3(1): vdaa166, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33501430

RESUMEN

BACKGROUND: The Coronavirus Disease 2019 (COVID-19) pandemic has affected individuals as well as disease-specific brain tumor organizations. These organizations around the world exist to address unmet needs for patients and caregivers they serve. The direct impact of the pandemic on these organizations constitutes significant collateral damage. In order to better understand the effects of the COVID-19 pandemic on brain tumor organizations, the International Brain Tumour Alliance (IBTA) carried out an international survey to identify organizational changes induced by the virus and approaches adopted to address challenges. METHODS: A 37-question online survey consisting of categorical and qualitative questions was developed and circulated to 130 brain tumor organizations across the world. Seventy-seven organizations from 22 countries completed the survey (59% return rate). Descriptive statistics and content analysis were used to present the results. RESULTS: Responses fell into the following 3 categories: (1) organizational characteristics, (2) impact of COVID-19 on services, and (3) COVID-19 impact on financial and human resources within organizations. Although organizational characteristics varied, common concerns reported were activity disruption which impacted organizations' abilities to offer usual services and challenges to sustaining funding. Both financial and human resources were stressed, but integral adaptations were made by organizations to preserve resources during the pandemic. CONCLUSIONS: Although brain tumor organizations have been impacted by the COVID-19 pandemic, organizations quickly adjusted to this unprecedented global healthcare crisis. Nimble reactions and flexibility have been vital to organization sustainability. Innovative approaches are required to ensure organizations remain viable so that needs of brain tumor community at large are met.

6.
Neurooncol Adv ; 2(1): vdaa104, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32989433

RESUMEN

BACKGROUND: Since the COVID-19 pandemic began, thousands of medical procedures and appointments have been canceled or delayed. The long-term effects of these drastic measures on brain tumor patients and caregivers are unknown. The purpose of this study is to better understand how COVID-19 has affected this vulnerable population on a global scale. METHODS: An online 79-question survey was developed by the International Brain Tumour Alliance, in conjunction with the SNO COVID-19 Task Force. The survey was sent to more than 120 brain tumor charities and not-for-profits worldwide and disseminated to pediatric and adult brain tumor patients and caregivers. Responses were collected from April to May 2020 and subdivided by patient versus caregiver and by geographical region. RESULTS: In total, 1989 participants completed the survey from 33 countries, including 1459 patients and 530 caregivers. There were no significant differences in COVID-19 testing rates (P = .662) or positive cases for brain tumor patients between regions (P = .1068). Caregivers were significantly more anxious than patients (P ≤ .0001). Patients from the Americas were most likely to have lost their jobs due to the pandemic, practiced self-isolation, and received telehealth services (P ≤ .0001). Patients from Europe experienced the most treatment delays (P = .0031). Healthcare providers, brain tumor charities, and not-for-profits were ranked as the most trusted sources of information. CONCLUSIONS: As a result of COVID-19, brain tumor patients and caregivers have experienced significant stress and anxiety. We must continue to provide accessible high-quality care, information, and support in the age of COVID-19.

7.
J Pharmacol Exp Ther ; 372(1): 107-118, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31732698

RESUMEN

Cystic fibrosis (CF) is the most common monogenic autosomal recessive disease in Caucasians caused by pathogenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (CFTR). Significant small molecule therapeutic advances over the past two decades have been made to target the defective CFTR protein and enhance its function. To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in CF, two biomolecular activities are required, namely, correctors to increase the amount of properly folded F508delCFTR levels at the cell surface and potentiators to allow the effective opening, i.e., function of the F508delCFTR channel. Combined, these activities enhance chloride ion transport yielding improved hydration of the lung surface and subsequent restoration of mucociliary clearance. To enhance clinical benefits to CF patients, a complementary triple combination therapy consisting of two corrector molecules, type 1 (C1) and type 2, with additive mechanisms along with a potentiator are being investigated in the clinic for maximum restoration of mutated CFTR function. We report the identification and in vitro biologic characterization of ABBV-2222/GLPG2222 (4-[(2R,4R)-4-({[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)-7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic acid),-a novel, potent, and orally bioavailable C1 corrector developed by AbbVie-Galapagos and currently in clinical trials-which exhibits substantial improvements over the existing C1 correctors. This includes improvements in potency and drug-drug interaction (DDI) compared with 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid (VX-809, Lumacaftor) and improvements in potency and efficacy compared with 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-[1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)indol-5-yl]cyclopropane-1-carboxamide (VX-661, Tezacaftor). ABBV-2222/GLPG2222 exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR with an EC50 value <10 nM. SIGNIFICANCE STATEMENT: To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in cystic fibrosis, AbbVie-Galapagos has developed ABBV-2222/GLPG2222, a novel, potent, and orally bioavailable C1 corrector of this protein. ABBV-2222/GLPG2222, which is currently in clinical trials, exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR and substantial improvements over the existing C1 correctors.


Asunto(s)
Benzoatos/farmacología , Benzopiranos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Pliegue de Proteína/efectos de los fármacos , Animales , Sitios de Unión , Membrana Celular/metabolismo , Células Cultivadas , Cloruros/metabolismo , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Células HEK293 , Humanos , Moduladores del Transporte de Membrana/farmacología , Unión Proteica , Transporte de Proteínas/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo
8.
ACS Med Chem Lett ; 10(11): 1543-1548, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31749908

RESUMEN

Cystic fibrosis (CF) is a genetic disorder that affects multiple tissues and organs. CF is caused by mutations in the CFTR gene, resulting in insufficient or impaired cystic fibrosis transmembrane conductance regulator (CFTR) protein. The deletion of phenylalanine at position 508 of the protein (F508del-CFTR) is the most common mutation observed in CF patients. The most effective treatments of these patients employ two CFTR modulator classes, correctors and potentiators. CFTR correctors increase protein levels at the cell surface; CFTR potentiators enable the functional opening of CFTR channels at the cell surface. Triple-combination therapies utilize two distinct corrector molecules (C1 and C2) to further improve the overall efficacy. We identified the need to develop a C2 corrector series that had the potential to be used in conjunction with our existing C1 corrector series and provide robust clinical efficacy for CF patients. The identification of a pyrrolidine series of CFTR C2 correctors and the structure-activity relationship of this series is described. This work resulted in the discovery and selection of (2S,3R,4S,5S)-3-(tert-butyl)-4-((2-methoxy-5-(trifluoromethyl)pyridin-3-yl)methoxy)-1-((S)-tetrahydro-2H-pyran-2-carbonyl)-5-(o-tolyl)pyrrolidine-2-carboxylic acid (ABBV/GLPG-3221), which was advanced to clinical trials.

9.
J Pharmacol Exp Ther ; 371(3): 583-589, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31562200

RESUMEN

Cancer cells are highly dependent on NAD+/NADH produced via the nicotinamide salvage pathway. The rate-limiting enzyme in this pathway is the nicotinamide phosphoribosyltransferase (NAMPT), which we have targeted with novel NAMPT inhibitors. NAMPT inhibition elicits depletion of total cellular NAD+ levels and ultimately cytotoxicity via depletion of cellular ATP levels. 18F-fluorodeoxyglucose- positron emission tomography (FDG-PET) is a translational imaging tool to assess glucose utilization in tumors and normal tissue. We used FDG-PET to understand the timing of ATP depletion in vivo and better understand the pharmacology of NAMPT inhibitors. Because of the intimate relationship between cellular ATP levels and cell viability, we developed an in-depth understanding of our NAMPT inhibitor pharmacology and the relationship with changes in tumor FDG uptake. Taken together, we show that FDG-PET could be used as a biomarker in clinical studies to understand dose and provide proof of mechanism for NAMPT inhibitors. SIGNIFICANCE STATEMENT: Our imaging data suggest that tumor 18F-fluorodeoxyglucose uptake can provide insight into the ATP status inside the tumor after nicotinamide phosphoribosyltransferase (NAMPT) therapy, with a novel NAMPT inhibitor. Such an approach could be used clinically as a pharmacodynamic biomarker to help understand the implications of dose, schedule, rescue strategy, or other clinical biomarkers.


Asunto(s)
Fluorodesoxiglucosa F18/farmacocinética , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Adenosina Trifosfato/metabolismo , Animales , Femenino , Células HCT116 , Humanos , Ratones , NAD/metabolismo
10.
Elife ; 72018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29676732

RESUMEN

Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project.


Asunto(s)
Sondas Moleculares/metabolismo , Farmacología/métodos , Proteínas/metabolismo , Tecnología Farmacéutica/métodos
11.
J Med Chem ; 61(4): 1436-1449, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29251932

RESUMEN

Cystic fibrosis (CF) is a multiorgan disease of the lungs, sinuses, pancreas, and gastrointestinal tract that is caused by a dysfunction or deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an epithelial anion channel that regulates salt and water balance in the tissues in which it is expressed. To effectively treat the most prevalent patient population (F508del mutation), two biomolecular modulators are required: correctors to increase CFTR levels at the cell surface, and potentiators to allow the effective opening of the CFTR channel. Despite approved potentiator and potentiator/corrector combination therapies, there remains a high need to develop more potent and efficacious correctors. Herein, we disclose the discovery of a highly potent series of CFTR correctors and the structure-activity relationship (SAR) studies that guided the discovery of ABBV/GLPG-2222 (22), which is currently in clinical trials in patients harboring the F508del CFTR mutation on at least one allele.


Asunto(s)
Benzoatos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Descubrimiento de Drogas , Amidas/síntesis química , Animales , Benzoatos/síntesis química , Benzoatos/farmacocinética , Cromanos/síntesis química , Perros , Humanos , Proteínas Mutantes/efectos de los fármacos , Ratas , Relación Estructura-Actividad
12.
Biochem Biophys Res Commun ; 491(3): 681-686, 2017 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-28756225

RESUMEN

Cancer cells have an unusually high requirement for the central and intermediary metabolite nicotinamide adenine dinucleotide (NAD+), and NAD+ depletion ultimately results in cell death. The rate limiting step within the NAD+ salvage pathway required for converting nicotinamide to NAD+ is catalyzed by nicotinamide phosphoribosyltransferase (NAMPT). Targeting NAMPT has been investigated as an anti-cancer strategy, and several highly selective small molecule inhibitors have been found to potently inhibit NAMPT in cancer cells, resulting in NAD+ depletion and cytotoxicity. To identify mechanisms that could cause resistance to NAMPT inhibitor treatment, we generated a human fibrosarcoma cell line refractory to the highly potent and selective NAMPT small molecule inhibitor, GMX1778. We uncovered novel and unexpected mechanisms of resistance including significantly increased expression of quinolinate phosphoribosyl transferase (QPRT), a key enzyme in the de novo NAD+ synthesis pathway. Additionally, exome sequencing of the NAMPT gene in the resistant cells identified a single heterozygous point mutation that was not present in the parental cell line. The combination of upregulation of the NAD+ de novo synthesis pathway through QPRT over-expression and NAMPT mutation confers resistance to GMX1778, but the cells are only partially resistant to next-generation NAMPT inhibitors. The resistance mechanisms uncovered herein provide a potential avenue to continue exploration of next generation NAMPT inhibitors to treat neoplasms in the clinic.


Asunto(s)
Cianuros/administración & dosificación , Citocinas/antagonistas & inhibidores , Citocinas/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/metabolismo , Guanidinas/administración & dosificación , NAD/biosíntesis , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/genética , Anilidas , Apoptosis/efectos de los fármacos , Apoptosis/genética , Arginina/análogos & derivados , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Fibrosarcoma/genética , Humanos , Mutación/genética , NAD/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Resultado del Tratamiento
13.
Bioorg Med Chem Lett ; 27(15): 3317-3325, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28610984

RESUMEN

Herein we disclose SAR studies that led to a series of isoindoline ureas which we recently reported were first-in-class, non-substrate nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. Modification of the isoindoline and/or the terminal functionality of screening hit 5 provided inhibitors such as 52 and 58 with nanomolar antiproliferative activity and preclinical pharmacokinetics properties which enabled potent antitumor activity when dosed orally in mouse xenograft models. X-ray crystal structures of two inhibitors bound in the NAMPT active-site are discussed.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Citocinas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Urea/análogos & derivados , Urea/farmacología , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Citocinas/química , Citocinas/metabolismo , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/uso terapéutico , Humanos , Isoindoles/química , Isoindoles/farmacocinética , Isoindoles/farmacología , Isoindoles/uso terapéutico , Ratones , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Nicotinamida Fosforribosiltransferasa/química , Nicotinamida Fosforribosiltransferasa/metabolismo , Relación Estructura-Actividad , Urea/farmacocinética , Urea/uso terapéutico
14.
Mol Cancer Ther ; 16(7): 1236-1245, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28468779

RESUMEN

Cancer cells are highly reliant on NAD+-dependent processes, including glucose metabolism, calcium signaling, DNA repair, and regulation of gene expression. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD+ salvage from nicotinamide, has been investigated as a target for anticancer therapy. Known NAMPT inhibitors with potent cell activity are composed of a nitrogen-containing aromatic group, which is phosphoribosylated by the enzyme. Here, we identified two novel types of NAM-competitive NAMPT inhibitors, only one of which contains a modifiable, aromatic nitrogen that could be a phosphoribosyl acceptor. Both types of compound effectively deplete cellular NAD+, and subsequently ATP, and produce cell death when NAMPT is inhibited in cultured cells for more than 48 hours. Careful characterization of the kinetics of NAMPT inhibition in vivo allowed us to optimize dosing to produce sufficient NAD+ depletion over time that resulted in efficacy in an HCT116 xenograft model. Our data demonstrate that direct phosphoribosylation of competitive inhibitors by the NAMPT enzyme is not required for potent in vitro cellular activity or in vivo antitumor efficacy. Mol Cancer Ther; 16(7); 1236-45. ©2017 AACR.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Citocinas/antagonistas & inhibidores , Inhibidores Enzimáticos/administración & dosificación , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Señalización del Calcio/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Citocinas/genética , Reparación del ADN/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Ratones , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Ensayos Antitumor por Modelo de Xenoinjerto
15.
PLoS One ; 10(7): e0131716, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26147105

RESUMEN

Histone methyltransferases are epigenetic regulators that modify key lysine and arginine residues on histones and are believed to play an important role in cancer development and maintenance. These epigenetic modifications are potentially reversible and as a result this class of enzymes has drawn great interest as potential therapeutic targets of small molecule inhibitors. Previous studies have suggested that the histone lysine methyltransferase G9a (EHMT2) is required to perpetuate malignant phenotypes through multiple mechanisms in a variety of cancer types. To further elucidate the enzymatic role of G9a in cancer, we describe herein the biological activities of a novel peptide-competitive histone methyltransferase inhibitor, A-366, that selectively inhibits G9a and the closely related GLP (EHMT1), but not other histone methyltransferases. A-366 has significantly less cytotoxic effects on the growth of tumor cell lines compared to other known G9a/GLP small molecule inhibitors despite equivalent cellular activity on methylation of H3K9me2. Additionally, the selectivity profile of A-366 has aided in the discovery of a potentially important role for G9a/GLP in maintenance of leukemia. Treatment of various leukemia cell lines in vitro resulted in marked differentiation and morphological changes of these tumor cell lines. Furthermore, treatment of a flank xenograft leukemia model with A-366 resulted in growth inhibition in vivo consistent with the profile of H3K9me2 reduction observed. In summary, A-366 is a novel and highly selective inhibitor of G9a/GLP that has enabled the discovery of a role for G9a/GLP enzymatic activity in the growth and differentiation status of leukemia cells.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Indoles/farmacología , Leucemia/enzimología , Compuestos de Espiro/farmacología , Animales , Femenino , Xenoinjertos , Humanos , Leucemia/genética , Leucemia/patología , Células MCF-7 , Ratones , Ratones SCID
17.
Sci Transl Med ; 7(279): 279ra40, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25787766

RESUMEN

The BCL-2/BCL-XL/BCL-W inhibitor ABT-263 (navitoclax) has shown promising clinical activity in lymphoid malignancies such as chronic lymphocytic leukemia. However, its efficacy in these settings is limited by thrombocytopenia caused by BCL-XL inhibition. This prompted the generation of the BCL-2-selective inhibitor venetoclax (ABT-199/GDC-0199), which demonstrates robust activity in these cancers but spares platelets. Navitoclax has also been shown to enhance the efficacy of docetaxel in preclinical models of solid tumors, but clinical use of this combination has been limited by neutropenia. We used venetoclax and the BCL-XL-selective inhibitors A-1155463 and A-1331852 to assess the relative contributions of inhibiting BCL-2 or BCL-XL to the efficacy and toxicity of the navitoclax-docetaxel combination. Selective BCL-2 inhibition suppressed granulopoiesis in vitro and in vivo, potentially accounting for the exacerbated neutropenia observed when navitoclax was combined with docetaxel clinically. By contrast, selectively inhibiting BCL-XL did not suppress granulopoiesis but was highly efficacious in combination with docetaxel when tested against a range of solid tumors. Therefore, BCL-XL-selective inhibitors have the potential to enhance the efficacy of docetaxel in solid tumors and avoid the exacerbation of neutropenia observed with navitoclax. These studies demonstrate the translational utility of this toolkit of selective BCL-2 family inhibitors and highlight their potential as improved cancer therapeutics.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Administración Oral , Compuestos de Anilina/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Benzotiazoles/química , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular , Docetaxel , Perfilación de la Expresión Génica , Granulocitos/metabolismo , Humanos , Isoquinolinas/química , Cinética , Ratones , Trasplante de Neoplasias , Neoplasias/metabolismo , Neutropenia/inducido químicamente , Neutrófilos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfonamidas/uso terapéutico , Taxoides/efectos adversos , Trombocitopenia/inducido químicamente , Proteína bcl-X/antagonistas & inhibidores , Proteína bcl-X/metabolismo
18.
J Med Chem ; 58(5): 2180-94, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25679114

RESUMEN

Myeloid cell leukemia 1 (MCL-1) is a BCL-2 family protein that has been implicated in the progression and survival of multiple tumor types. Herein we report a series of MCL-1 inhibitors that emanated from a high throughput screening (HTS) hit and progressed via iterative cycles of structure-guided design. Advanced compounds from this series exhibited subnanomolar affinity for MCL-1 and excellent selectivity over other BCL-2 family proteins as well as multiple kinases and GPCRs. In a MCL-1 dependent human tumor cell line, administration of compound 30b rapidly induced caspase activation with associated loss in cell viability. The small molecules described herein thus comprise effective tools for studying MCL-1 biology.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Diseño de Fármacos , Mieloma Múltiple/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/química , Neoplasias Pancreáticas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Bases de Datos Factuales , Ensayos Analíticos de Alto Rendimiento , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Unión Proteica , Relación Estructura-Actividad , Células Tumorales Cultivadas
19.
ACS Med Chem Lett ; 5(10): 1088-93, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25313317

RESUMEN

A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses. A-1155463 thus represents an excellent tool molecule for studying BCL-XL biology as well as a productive lead structure for further optimization.

20.
ACS Med Chem Lett ; 5(2): 205-9, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24900801

RESUMEN

G9a is a histone lysine methyltransferase responsible for the methylation of histone H3 lysine 9. The discovery of A-366 arose from a unique diversity screening hit, which was optimized by incorporation of a propyl-pyrrolidine subunit to occupy the enzyme lysine channel. A-366 is a potent inhibitor of G9a (IC50: 3.3 nM) with greater than 1000-fold selectivity over 21 other methyltransferases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...