Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 110: 68-81, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29196214

RESUMEN

The aberrant accumulation of alpha-synuclein (α-syn) is believed to contribute to the onset and pathogenesis of Parkinson's disease (PD). The autophagy-lysosome pathway (ALP) is responsible for the high capacity clearance of α-syn. ALP dysfunction is documented in PD and pre-clinical evidence suggests that inhibiting the ALP promotes the pathological accumulation of α-syn. We previously identified the pathological accumulation of α-syn in the brains of mice deficient for the soluble lysosomal enzyme alpha-Galactosidase A (α-Gal A), a member of the glycosphingolipid metabolism pathway. In the present study, we quantified α-Gal A activity and levels of its glycosphingolipid metabolites in postmortem temporal cortex specimens from control individuals and in PD individuals staged with respect to α-syn containing Lewy body pathology. In late-state PD temporal cortex we observed significant decreases in α-Gal A activity and the 46kDa "active" species of α-Gal A as determined respectively by fluorometric activity assay and western blot analysis. These decreases in α-Gal A activity/levels correlated significantly with increased α-syn phosphorylated at serine 129 (p129S-α-syn) that was maximal in late-stage PD temporal cortex. Mass spectrometric analysis of 29 different isoforms of globotriaosylceramide (Gb3), a substrate of α-Gal A indicated no significant differences with respect to different stages of PD temporal cortex. However, significant correlations were observed between increased levels of several Gb3 isoforms and with decreased α-Gal A activity and/or increased p129S-α-syn. Deacylated Gb3 (globotriaosylsphingosine or lyso-Gb3) was also analyzed in PD brain tissue but was below the limit of detection of 20pmol/g. Analysis of other lysosomal enzymes revealed a significant decrease in activity for the lysosomal aspartic acid protease cathepsin D but not for glucocerebrosidase (GCase) or cathepsin B in late-stage PD temporal cortex. However, a significant correlation was observed between decreasing GCase activity and increasing p129S-α-syn. Together our findings indicate α-Gal A deficiency in late-stage PD brain that correlates significantly with the pathological accumulation of α-syn, and further suggest the potential for α-Gal A and its glycosphingolipid substrates as putative biomarkers for PD.


Asunto(s)
Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/patología , Lóbulo Temporal/enzimología , Lóbulo Temporal/patología , alfa-Galactosidasa/metabolismo , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Trihexosilceramidas/metabolismo , alfa-Sinucleína/metabolismo
2.
PLoS One ; 9(4): e93257, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24695574

RESUMEN

ATP6V0C is the bafilomycin A1-binding subunit of vacuolar ATPase, an enzyme complex that critically regulates vesicular acidification. We and others have shown previously that bafilomycin A1 regulates cell viability, autophagic flux and metabolism of proteins that accumulate in neurodegenerative disease. To determine the importance of ATP6V0C for autophagy-lysosome pathway function, SH-SY5Y human neuroblastoma cells differentiated to a neuronal phenotype were nucleofected with non-target or ATP6V0C siRNA and following recovery were treated with either vehicle or bafilomycin A1 (0.3-100 nM) for 48 h. ATP6V0C knockdown was validated by quantitative RT-PCR and by a significant decrease in Lysostracker Red staining. ATP6V0C knockdown significantly increased basal levels of microtubule-associated protein light chain 3-II (LC3-II), α-synuclein high molecular weight species and APP C-terminal fragments, and inhibited autophagic flux. Enhanced LC3 and LAMP-1 co-localization following knockdown suggests that autophagic flux was inhibited in part due to lysosomal degradation and not by a block in vesicular fusion. Knockdown of ATP6V0C also sensitized cells to the accumulation of autophagy substrates and a reduction in neurite length following treatment with 1 nM bafilomycin A1, a concentration that did not produce such alterations in non-target control cells. Reduced neurite length and the percentage of propidium iodide-positive dead cells were also significantly greater following treatment with 3 nM bafilomycin A1. Together these results indicate a role for ATP6V0C in maintaining constitutive and stress-induced ALP function, in particular the metabolism of substrates that accumulate in age-related neurodegenerative disease and may contribute to disease pathogenesis.


Asunto(s)
Autofagia/fisiología , Lisosomas/fisiología , Neuroblastoma/metabolismo , Enfermedades Neurodegenerativas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Línea Celular Tumoral , Humanos , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuroblastoma/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología , alfa-Sinucleína/metabolismo
3.
Acta Neuropathol Commun ; 2: 20, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24529306

RESUMEN

BACKGROUND: Mutations in the gene for alpha-galactosidase A result in Fabry disease, a rare, X-linked lysosomal storage disorder characterized by a loss of alpha-galactosidase A enzymatic activity. The resultant accumulation of glycosphingolipids throughout the body leads to widespread vasculopathy with particular detriment to the kidneys, heart and nervous system. Disruption in the autophagy-lysosome pathway has been documented previously in Fabry disease but its relative contribution to nervous system pathology in Fabry disease is unknown. Using an experimental mouse model of Fabry disease, alpha-galactosidase A deficiency, we examined brain pathology in 20-24 month old mice with particular emphasis on the autophagy-lysosome pathway. RESULTS: Alpha-galactosidase A-deficient mouse brains exhibited enhanced punctate perinuclear immunoreactivity for the autophagy marker microtubule-associated protein light-chain 3 (LC3) in the parenchyma of several brain regions, as well as enhanced parenchymal and vascular immunoreactivity for lysosome-associated membrane protein-1 (LAMP-1). Ultrastructural analysis revealed endothelial cell inclusions with electron densities and a pronounced accumulation of electron-dense lipopigment. The pons of alpha-galactosidase A-deficient mice in particular exhibited a striking neuropathological phenotype, including the presence of large, swollen axonal spheroids indicating axonal degeneration, in addition to large interstitial aggregates positive for phosphorylated alpha-synuclein that co-localized with the axonal spheroids. Double-label immunofluorescence revealed co-localization of phosphorylated alpha-synuclein aggregates with ubiquitin and LC3. CONCLUSION: Together these findings indicate widespread neuropathology and focused axonal neurodegeneration in alpha-galactosidase A-deficient mouse brain in association with disruption of the autophagy-lysosome pathway, and provide the basis for future mechanistic assessment of the contribution of the autophagy-lysosome pathway to this histologic phenotype.


Asunto(s)
Autofagia/genética , Encéfalo/patología , Enfermedad de Fabry , Lisosomas/metabolismo , Degeneración Nerviosa/etiología , Transducción de Señal/genética , alfa-Galactosidasa/genética , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Modelos Animales de Enfermedad , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/genética , Enfermedad de Fabry/patología , Regulación de la Expresión Génica/genética , Cuerpos de Inclusión/patología , Cuerpos de Inclusión/ultraestructura , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/genética , Ratones , Ratones Noqueados , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/metabolismo , Degeneración Nerviosa/genética , Imagen Óptica , alfa-Sinucleína/metabolismo
4.
J Neurosci ; 23(34): 10859-66, 2003 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-14645479

RESUMEN

Antipsychotic drugs require days of treatment to begin to produce therapeutic effects. We report that in vivo treatment with the antipsychotic drug haloperidol acts with a delay of days to slow spontaneous repetitive firing by isolated midbrain dopamine neurons. The decreased excitability is caused by an increased number of functional A-type K+ channels without any change in gating properties. Upregulation of dopamine neuron Kv4.3 mRNA accounts for this effect, demonstrating a role for channel gene expression in this delayed drug action. The resultant long-term dampening of dopamine neuron excitability may serve to tone down the dopamine system.


Asunto(s)
Antipsicóticos/farmacología , Dopamina/biosíntesis , Haloperidol/farmacología , Neuronas/efectos de los fármacos , Canales de Potasio/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Separación Celular , Inhibidores Enzimáticos/farmacología , Mesencéfalo/citología , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Neuronas/citología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Tetraetilamonio/farmacología , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...