Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(6): e27538, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38509939

RESUMEN

The plasmonic sensors based on silver nanoparticles are limited in application due to their relatively fast degradation in the ambient atmosphere. The technology of ion-beam modification for the creation of monocrystalline silver nanoparticles (NPs) with stable plasmonic properties will expand the application of silver nanostructures. In the present study, highly-stable monocrystalline NPs were formed on the basis of a thin silver film by low-energy ion irradiation. Combined with lithography, this technique allows the creation of nanoparticle ensembles in variant forms. The characterization of the nanoparticles formed by ion-beam modification showed long-term outstanding for Ag nanoparticles stability of their plasmonic properties due to their monocrystalline structure. According to optical spectroscopy data, the reliable plasmonic properties in the ambient atmosphere are preserved for up to 39 days. The mapping of crystal violet dye via surface-enhanced Raman spectroscopy (SERS) revealed a strong amplification factor sustaining at least thrice as long as the one of similarly sized polycrystalline silver NPs formed by annealing. The plasmonic properties sustain more than a month of storage in the ambient atmosphere. Thus, ion-beam modification of silver film makes it possible to fabricate NPs with stable plasmonic properties and form clusters of NPs for sensor technology and SERS applications.

2.
Opt Lett ; 49(1): 25-28, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134143

RESUMEN

The exceptional optical, electrical, and mechanical capabilities of layered transition metal carbides, nitrides, and carbonitrides, called MXenes, revolutionized materials science. Among them, Ti3C2 received the most attention owing to the developed synthesis and processing methods, high conductivity, and pronounced plasmonic response. The latter, however, remains controversial with the open question of whether the peak around 800 nm has plasmonic or interband transition origin. To address this issue, we combine spectroscopic ellipsometry and transmittance results with first-principle computations. Their combination reveals that although Ti3C2 is a metal, its optical response becomes plasmonic (Re ε < 0) above 1415 nm, in contrast to the previous understanding. In addition to fundamental significance, this dual dielectric/plasmonic optical response opens a path for theranostic applications, as we demonstrated on the example of Ti3C2 nanospheres. Thus, our study revisits broadband (300-3300 nm) optical constants of Ti3C2 and broadens its application scope in photonics.

3.
ACS Nano ; 17(19): 19338-19348, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37738093

RESUMEN

Due to the absence of labels and fast analyses, optical biosensors promise major advances in biomedical diagnostics, security, environmental, and food safety applications. However, the sensitivity of the most advanced plasmonic biosensor implementations has a fundamental limitation caused by losses in the system and/or geometry of biochips. Here, we report a "scissor effect" in topologically dark metamaterials which is capable of providing ultrahigh-amplitude sensitivity to biosensing events, thus solving the bottleneck sensitivity limitation problem. We explain how the "scissor effect" can be realized via the proper design of topologically dark metamaterials and describe strategies for their fabrication. To validate the applicability of this effect in biosensing, we demonstrate the detection of folic acid (vitamin important for human health) in a wide 3-log linear dynamic range with a limit of detection of 0.22 nM, which is orders of magnitude better than those previously reported for all optical counterparts. Our work provides possibilities for designing and realizing plasmonic, semiconductor, and dielectric metamaterials with ultrasensitivity to binding events.

4.
Proc Natl Acad Sci U S A ; 119(39): e2208830119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122203

RESUMEN

Recent developments in the area of resonant dielectric nanostructures have created attractive opportunities for concentrating and manipulating light at the nanoscale and the establishment of the new exciting field of all-dielectric nanophotonics. Transition metal dichalcogenides (TMDCs) with nanopatterned surfaces are especially promising for these tasks. Still, the fabrication of these structures requires sophisticated lithographic processes, drastically complicating application prospects. To bridge this gap and broaden the application scope of TMDC nanomaterials, we report here femtosecond laser-ablative fabrication of water-dispersed spherical TMDC (MoS2 and WS2) nanoparticles (NPs) of variable size (5 to 250 nm). Such NPs demonstrate exciting optical and electronic properties inherited from TMDC crystals, due to preserved crystalline structure, which offers a unique combination of pronounced excitonic response and high refractive index value, making possible a strong concentration of electromagnetic field in the NPs. Furthermore, such NPs offer additional tunability due to hybridization between the Mie and excitonic resonances. Such properties bring to life a number of nontrivial effects, including enhanced photoabsorption and photothermal conversion. As an illustration, we demonstrate that the NPs exhibit a very strong photothermal response, much exceeding that of conventional dielectric nanoresonators based on Si. Being in a mobile colloidal state and exhibiting superior optical properties compared to other dielectric resonant structures, the synthesized TMDC NPs offer opportunities for the development of next-generation nanophotonic and nanotheranostic platforms, including photothermal therapy and multimodal bioimaging.


Asunto(s)
Nanosferas , Medicina de Precisión , Refractometría , Molibdeno , Nanosferas/uso terapéutico , Medicina de Precisión/instrumentación , Agua
5.
Nanomaterials (Basel) ; 12(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35630892

RESUMEN

Owing to a strong photothermal response in the near-IR spectral range and very low toxicity, titanium nitride (TiN) nanoparticles (NPs) synthesized by pulsed laser ablation in liquids (PLAL) present a novel appealing object for photo-induced therapy of cancer, but the properties of these NPs still require detailed investigation. Here, we have elaborated methods of femtosecond laser ablation from the TiN target in a variety of liquid solutions, including acetonitrile, dimethylformamide, acetone, water, and H2O2, to synthesize TiN NPs and clarify the effect of liquid type on the composition and properties of the formed NPs. The ablation in all solvents led to the formation of spherical NPs with a mean size depending on the liquid type, while the composition of the NPs ranged from partly oxidized TiN to almost pure TiO2, which conditioned variations of plasmonic peak in the region of relative tissue transparency (670-700 nm). The degree of NP oxidation depended on the solvent, with much stronger oxidation for NPs prepared in aqueous solutions (especially in H2O2), while the ablation in organic solvents resulted in a partial formation of titanium carbides as by-products. The obtained results contribute to better understanding of the processes in reactive PLAL and can be used to design TiN NPs with desired properties for biomedical applications.

6.
Nanomaterials (Basel) ; 11(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071775

RESUMEN

Two-dimensional layers of transition-metal dichalcogenides (TMDs) have been widely studied owing to their exciting potential for applications in advanced electronic and optoelectronic devices. Typically, monolayers of TMDs are produced either by mechanical exfoliation or chemical vapor deposition (CVD). While the former produces high-quality flakes with a size limited to a few micrometers, the latter gives large-area layers but with a nonuniform surface resulting from multiple defects and randomly oriented domains. The use of epitaxy growth can produce continuous, crystalline and uniform films with fewer defects. Here, we present a comprehensive study of the optical and structural properties of a single layer of MoS2 synthesized by molecular beam epitaxy (MBE) on a sapphire substrate. For optical characterization, we performed spectroscopic ellipsometry over a broad spectral range (from 250 to 1700 nm) under variable incident angles. The structural quality was assessed by optical microscopy, atomic force microscopy, scanning electron microscopy, and Raman spectroscopy through which we were able to confirm that our sample contains a single-atomic layer of MoS2 with a low number of defects. Raman and photoluminescence spectroscopies revealed that MBE-synthesized MoS2 layers exhibit a two-times higher quantum yield of photoluminescence along with lower photobleaching compared to CVD-grown MoS2, thus making it an attractive candidate for photonic applications.

7.
Nanomaterials (Basel) ; 11(5)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34066979

RESUMEN

Graphene is a promising building block material for developing novel photonic and optoelectronic devices. Here, we report a comprehensive experimental study of chemical-vapor deposited (CVD) monolayer graphene's optical properties on three different substrates for ultraviolet, visible, and near-infrared spectral ranges (from 240 to 1000 nm). Importantly, our ellipsometric measurements are free from the assumptions of additional nanometer-thick layers of water or other media. This issue is critical for practical applications since otherwise, these additional layers must be included in the design models of various graphene photonic, plasmonic, and optoelectronic devices. We observe a slight difference (not exceeding 5%) in the optical constants of graphene on different substrates. Further, the optical constants reported here are very close to those of graphite, which hints on their applicability to multilayer graphene structures. This work provides reliable data on monolayer graphene's optical properties, which should be useful for modeling and designing photonic devices with graphene.

8.
Nanomaterials (Basel) ; 12(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35010091

RESUMEN

SnS2 and SnSe2 have recently been shown to have a wide range of applications in photonic and optoelectronic devices. However, because of incomplete knowledge about their optical characteristics, the use of SnS2 and SnSe2 in optical engineering remains challenging. Here, we addressed this problem by establishing SnS2 and SnSe2 linear and nonlinear optical properties in the broad (300-3300 nm) spectral range. Coupled with the first-principle calculations, our experimental study unveiled the full dielectric tensor of SnS2 and SnSe2. Furthermore, we established that SnS2 is a promising material for visible high refractive index nanophotonics. Meanwhile, SnSe2 demonstrates a stronger nonlinear response compared with SnS2. Our results create a solid ground for current and next-generation SnS2- and SnSe2-based devices.

9.
Chemphyschem ; 16(5): 1071-8, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25728757

RESUMEN

The photoluminescence (PL) of CdSe quantum dots (QDs) that form stable nanocomposites with polymer liquid crystals (LCs) as smectic C hydrogen-bonded homopolymers from a family of poly[4-(n-acryloyloxyalkyloxy)benzoic acids] is reported. The matrix that results from the combination of these units with methoxyphenyl benzoate and cholesterol-containing units has a cholesteric structure. The exciton PL band of QDs in the smectic matrix is redshifted with respect to QDs in solution, whereas a blueshift is observed with the cholesteric matrix. The PL lifetimes and quantum yield in cholesteric nanocomposites are higher than those in smectic ones. This is interpreted in terms of a higher order of the smectic matrix in comparison to the cholesteric one. CdSe QDs in the ordered smectic matrix demonstrate a splitting of the exciton PL band and an enhancement of the photoinduced differential transmission. These results reveal the effects of the structure of polymer LC matrices on the optical properties of embedded QDs, which offer new possibilities for photonic applications of QD-LC polymer nanocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...