Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 24(4): 4097-108, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26907060

RESUMEN

In this work, we propose and experimentally demonstrate a novel low-complexity technique for fiber nonlinearity compensation. We achieved a transmission distance of 2818 km for a 32-GBaud dual-polarization 16QAM signal. For efficient implantation, and to facilitate integration with conventional digital signal processing (DSP) approaches, we independently compensate fiber nonlinearities after linear impairment equalization. Therefore this algorithm can be easily implemented in currently deployed transmission systems after using linear DSP. The proposed equalizer operates at one sample per symbol and requires only one computation step. The structure of the algorithm is based on a first-order perturbation model with quantized perturbation coefficients. Also, it does not require any prior calculation or detailed knowledge of the transmission system. We identified common symmetries between perturbation coefficients to avoid duplicate and unnecessary operations. In addition, we use only a few adaptive filter coefficients by grouping multiple nonlinear terms and dedicating only one adaptive nonlinear filter coefficient to each group. Finally, the complexity of the proposed algorithm is lower than previously studied nonlinear equalizers by more than one order of magnitude.

2.
Opt Express ; 23(25): 32654-63, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26699054

RESUMEN

We propose and experimentally demonstrate a novel sub-band multiplexed data architecture for chromatic dispersion (CD) mitigation. We have demonstrated 32 GBaud multi-sub-band (MSB) dual-polarization (DP) 16QAM transmission over 2400 km. Using this approach, the transmitted signal bandwidth is divided into multiple narrow-bandwidth sub-bands, each operating at a lower baud rate. Within each sub-band bandwidth, the CD frequency response can be approximated as a linear-phase band-pass filter, which can be considered as an analog delay that does not require compensation. Therefore, the resulting receiver digital signal processing (DSP) is simplified due to the removal of the CD compensation equalizer. In addition, this leads to efficient parallelization of DSP tasks by deploying multiple independent sub-band processors running at a lower clock rate. The proposed system reduces receiver computational complexity and offers 1 dB higher Kerr-nonlinearity tolerance and 2% extended transmission reach in comparison to the conventional single carrier systems.

3.
Opt Express ; 23(20): 25608-19, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26480077

RESUMEN

We experimentally demonstrate a novel digital signal processing (DSP) structure for reduced guard-interval (RGI) OFDM coherent optical systems. The proposed concept is based on digitally slicing optical channel bandwidth into multiple spectrally disjoint sub-bands which are then processed in parallel. Each low bandwidth sub-band has a smaller delay-spread compared to a full-band signal. This enables compensation of both chromatic dispersion (CD) and polarization mode dispersion using a simple timing and one-tap-per-symbol frequency domain equalizer with a small cyclic prefix overhead. In terms of the DSP architecture, this allows for a highly efficient parallelization of DSP tasks performed over the received signal samples by deploying multiple processors running at a lower clock rate. It should be noted that this parallelization is performed in the frequency domain and it allows for flexible optical transceiver schemes. In addition, the resulting optical receiver is simplified due to the removal of the CD compensation equalizer compared to conventional RGI-OFDM systems. In this paper we experimentally demonstrate digital sub-banding of optical bandwidth. We test the system performance for different modulation formats (QPSK, 16QAM and 32QAM) over various transmission distances and optical launch powers using a 1.5% CP overhead in all scenarios. We also compare the proposed RGI-OFDM architecture performance against common single carrier modulation formats. At the same total data rate and signal bandwidth both systems have similar performance and transmission reach whereas the proposed method allows for a significant reduction of computational complexity due to removal of CD pre/post compensation equalizer.

4.
Opt Express ; 20(19): 21413-33, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23037264

RESUMEN

A self-coherent receiver capable of demultiplexing PolMUX-signals without an external polarization controller is presented. Training sequences are introduced to estimate the polarization rotation, and a decision feedback recursive algorithm mitigates the random walk of the recovered field. The concept is tested for a PolMUX-DQPSK modulation format where one polarization carries a normal DQPSK signal while the other polarization is encoded as a progressive phase-shift DQPSK signal. An experimental demonstration of the scheme for a 112 Gbit/s PolMUX-DQPSK signal is presented.

5.
Opt Express ; 20(14): 15452-73, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22772241

RESUMEN

Self-coherent detection with interferometric field reconstruction aims at retrieving the complex-valued optical field (amplitude and phase) by digitally processing delay interferometer (DI) measurements, in order to realize a differential direct detection receiver with capabilities akin to that of a fully coherent receiver with polarization multiplexing, albeit without requiring a local oscillator laser in the receiver. Here we introduce a novel digital recursive algorithm capable of accurately reconstructing the optical complex field (both amplitude and phase) solely from the quadrature DI outputs, eliminating the AM photo-detector branch. We analyze a key impairment namely the accumulation of errors and fluctuations in the reconstructed amplitude and phase due to ADC quantization noise, recirculating in the recursion. We introduce signal processing measures to effectively mitigate this noise impairment leading to a potentially practical self-coherent receiver, demonstrated in this paper for a single polarization. We also investigate the range of applicability of self-coherent detection concluding that it is most suitable to relatively low baud-rate systems such as passive optical networks, for which application the self-coherent receiver outperforms the coherent homodyne receiver due to its improved laser noise tolerance, obtained due to the removal of the optical local oscillator.

6.
Opt Express ; 20(10): 10944-62, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22565718

RESUMEN

This paper extends our prior coherent MSDD Carrier Recovery system from QPSK to QAM operation and also characterizes for the first time the Carrier Frequency Offset (CFO) mitigation capabilities of the novel MSDD for QAM systems. We introduce and numerically investigate the performance of an improved MSDD carrier recovery system (differing from the one disclosed in our MSDD for QPSK prior paper), automatically adapting to the channel statistics for optimal phase-noise mitigation. Remarkably, we do not require a separate structure to estimate and mitigate CFO, but the same adaptive structure originally intended for phase noise mitigation is shown to also automatically provide frequency offset estimation and recovery functionality. The CFO capture range of our system is in principle infinite, whereas prior CFO mitigation systems have CFO capture ranges limited to a small a fraction of the baud-rate. When used for 16-QAM with coherent-grade lasers of 100 KHz linewidth, our MSDD system attains the best tradeoffs between performance and complexity, relative to other carrier recovery systems combining blind-phase-search with maximum likelihood detection. We also present additional MSDD phase-noise recovery system variants whereby substantially reduced complexity is traded off for slightly degraded performance. Our MSDD system is able to switch "on-the-fly" to various m-QAM constellation sizes, e.g. seamlessly transition between 16-QAM and QPSK, which may be useful for dynamically adaptive optical networks.


Asunto(s)
Rayos Láser , Óptica y Fotónica , Algoritmos , Electrónica , Diseño de Equipo , Funciones de Verosimilitud , Dispositivos Ópticos , Oscilometría , Fotones
7.
Opt Express ; 20(3): 1981-2003, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22330440

RESUMEN

The MSDD carrier phase estimation technique is derived here for optically coherent QPSK transmission, introducing the principle of operation while providing intuitive insight in terms of a multi-symbol extension of naïve delay-detection. We derive here for the first time Wiener-optimized and LMS-adapted versions of MSDD, introduce simplified hardware realizations, and evaluate complexity and numerical performance tradeoffs of this highly robust and low-complexity carrier phase recovery method. A multiplier-free carrier phase recovery version of the MSDD provides nearly optimal performance for linewidths up to ~0.5 MHz, whereas for wider linewidths, the Wiener or LMS versions provide optimal performance at about 9 taps, using 1 or 2 complex multipliers per tap.


Asunto(s)
Algoritmos , Modelos Teóricos , Refractometría/métodos , Procesamiento de Señales Asistido por Computador , Telecomunicaciones , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...