Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2313568121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38648470

RESUMEN

United States (US) Special Operations Forces (SOF) are frequently exposed to explosive blasts in training and combat, but the effects of repeated blast exposure (RBE) on SOF brain health are incompletely understood. Furthermore, there is no diagnostic test to detect brain injury from RBE. As a result, SOF personnel may experience cognitive, physical, and psychological symptoms for which the cause is never identified, and they may return to training or combat during a period of brain vulnerability. In 30 active-duty US SOF, we assessed the relationship between cumulative blast exposure and cognitive performance, psychological health, physical symptoms, blood proteomics, and neuroimaging measures (Connectome structural and diffusion MRI, 7 Tesla functional MRI, [11C]PBR28 translocator protein [TSPO] positron emission tomography [PET]-MRI, and [18F]MK6240 tau PET-MRI), adjusting for age, combat exposure, and blunt head trauma. Higher blast exposure was associated with increased cortical thickness in the left rostral anterior cingulate cortex (rACC), a finding that remained significant after multiple comparison correction. In uncorrected analyses, higher blast exposure was associated with worse health-related quality of life, decreased functional connectivity in the executive control network, decreased TSPO signal in the right rACC, and increased cortical thickness in the right rACC, right insula, and right medial orbitofrontal cortex-nodes of the executive control, salience, and default mode networks. These observations suggest that the rACC may be susceptible to blast overpressure and that a multimodal, network-based diagnostic approach has the potential to detect brain injury associated with RBE in active-duty SOF.


Asunto(s)
Traumatismos por Explosión , Personal Militar , Humanos , Traumatismos por Explosión/diagnóstico por imagen , Adulto , Masculino , Estados Unidos , Imagen por Resonancia Magnética , Femenino , Tomografía de Emisión de Positrones , Cognición/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Adulto Joven
2.
J Spec Oper Med ; 23(4): 47-56, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-37851859

RESUMEN

United States Special Operations Forces (SOF) personnel are frequently exposed to explosive blasts in training and combat. However, the effects of repeated blast exposure on the human brain are incompletely understood. Moreover, there is currently no diagnostic test to detect repeated blast brain injury (rBBI). In this "Human Performance Optimization" article, we discuss how the development and implementation of a reliable diagnostic test for rBBI has the potential to promote SOF brain health, combat readiness, and quality of life.


Asunto(s)
Traumatismos por Explosión , Personal Militar , Humanos , Estados Unidos , Calidad de Vida , Encéfalo/diagnóstico por imagen , Traumatismos por Explosión/diagnóstico , Traumatismos por Explosión/terapia , Explosiones
3.
J Neurotrauma ; 39(19-20): 1391-1407, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35620901

RESUMEN

Emerging evidence suggests that repeated blast exposure (RBE) is associated with brain injury in military personnel. United States (U.S.) Special Operations Forces (SOF) personnel experience high rates of blast exposure during training and combat, but the effects of low-level RBE on brain structure and function in SOF have not been comprehensively characterized. Further, the pathophysiological link between RBE-related brain injuries and cognitive, behavioral, and physical symptoms has not been fully elucidated. We present a protocol for an observational pilot study, Long-Term Effects of Repeated Blast Exposure in U.S. SOF Personnel (ReBlast). In this exploratory study, 30 active-duty SOF personnel with RBE will participate in a comprehensive evaluation of: 1) brain network structure and function using Connectome magnetic resonance imaging (MRI) and 7 Tesla MRI; 2) neuroinflammation and tau deposition using positron emission tomography; 3) blood proteomics and metabolomics; 4) behavioral and physical symptoms using self-report measures; and 5) cognition using a battery of conventional and digitized assessments designed to detect subtle deficits in otherwise high-performing individuals. We will identify clinical, neuroimaging, and blood-based phenotypes that are associated with level of RBE, as measured by the Generalized Blast Exposure Value. Candidate biomarkers of RBE-related brain injury will inform the design of a subsequent study that will test a diagnostic assessment battery for detecting RBE-related brain injury. Ultimately, we anticipate that the ReBlast study will facilitate the development of interventions to optimize the brain health, quality of life, and battle readiness of U.S. SOF personnel.


Asunto(s)
Traumatismos por Explosión , Conmoción Encefálica , Lesiones Encefálicas , Personal Militar , Biomarcadores , Traumatismos por Explosión/complicaciones , Humanos , Personal Militar/psicología , Estudios Observacionales como Asunto , Proyectos Piloto , Calidad de Vida , Estados Unidos/epidemiología
4.
Neuroimage Clin ; 30: 102672, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34016561

RESUMEN

Ibudilast (MN-166) is an inhibitor of macrophage migration inhibitory factor (MIF) and phosphodiesterases 3,4,10 and 11 (Gibson et al., 2006; Cho et al., 2010). Ibudilast attenuates CNS microglial activation and secretion of pro-inflammatory cytokines (Fujimoto et al., 1999; Cho et al., 2010). In vitro evidence suggests that ibudilast is neuroprotective by suppressing neuronal cell death induced by microglial activation. People with ALS have increased microglial activation measured by [11C]PBR28-PET in the motor cortices. The primary objective is to determine the impact of ibudilast on reducing glial activation and neuroaxonal loss in ALS, measured by PBR28-PET and serum Neurofilament light (NfL). The secondary objectives included determining safety and tolerability of ibudilast high dosage (up to 100 mg/day) over 36 weeks. In this open label trial, 35 eligible ALS participants underwent ibudilast treatment up to 100 mg/day for 36 weeks. Of these, 30 participants were enrolled in the main study cohort and were included in biomarker, safety and tolerability analyses. Five additional participants were enrolled in the expanded access arm, who did not meet imaging eligibility criteria and were included in the safety and tolerability analyses. The primary endpoints were median change from baseline in (a) PBR28-PET uptake in primary motor cortices, measured by standard uptake value ratio (SUVR) over 12-24 weeks and (b) serum NfL over 36-40 weeks. The secondary safety and tolerability endpoints were collected through Week 40. The baseline median (range) of PBR28-PET SUVR was 1.033 (0.847, 1.170) and NfL was 60.3 (33.1, 219.3) pg/ml. Participants who completed both pre and post-treatment scans had PBR28-PET SUVR median(range) change from baseline of 0.002 (-0.184, 0.156) , P = 0.5 (n = 22). The median(range) NfL change from baseline was 0.4 pg/ml (-1.8, 17.5), P = 0.2 (n = 10 participants). 30(86%) participants experienced at least one, possibly study drug related adverse event. 13(37%) participants could not tolerate 100 mg/day and underwent dose reduction to 60-80 mg/day and 11(31%) participants discontinued study drug early due to drug related adverse events. The study concludes that following treatment with ibudilast up to 100 mg/day in ALS participants, there were no significant reductions in (a) motor cortical glial activation measured by PBR28-PET SUVR over 12-24 weeks or (b) CNS neuroaxonal loss, measured by serum NfL over 36-40 weeks. Dose reductions and discontinuations due to treatment emergent adverse events were common at this dosage in ALS participants. Future pharmacokinetic and dose-finding studies of ibudilast would help better understand tolerability and target engagement in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Biomarcadores , Estudios de Cohortes , Humanos , Piridinas
5.
ACS Chem Neurosci ; 12(5): 906-916, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33576234

RESUMEN

Several clinical upper motor neuron burden scales (UMNSs) variably measure brain dysfunction in amyotrophic lateral sclerosis (ALS). Here, we compare relationship of two widely used clinical UMNSs in ALS (Penn and MGH UMNSs) with (a) neuroimaging markers of brain dysfunction and (b) neurological impairment status using the gold-standard functional measure, the revised ALS Functional Rating Scale (ALSFRS-R). MGH UMNS measures hyperreflexia alone, and Penn UMNS measures hyperreflexia, spasticity, and pseudobulbar affect. Twenty-eight ALS participants underwent both Penn and MGH UMNSs, at a matching time-point as a simultaneous [11C]PBR28 positron emission tomography (PBR28-PET)/Magnetic Resonance scan and ALSFRS-R. The two UMNSs were compared for localization and strength of association with neuroimaging markers of: (a) neuroinflammation, PBR28-PET and MR Spectroscopy metabolites (myo-inositol and choline) and (b) corticospinal axonal loss, fractional anisotropy (FA), and MR Spectroscopy metabolite (N-acetylaspartate). Among clinical UMN manifestations, segmental hyperreflexia, spasticity, and pseudobulbar affect occurred in 100, 43, and 18% ALS participants, respectively. Pseudobulbar affect did not map to any specific brain regional dysfunction, while hyperreflexia and spasticity subdomains significantly correlated and colocalized neurobiological changes to corticospinal pathways on whole brain voxel-wise analyses. Both UMNS total scores showed significant and similar strength of association with (a) neuroimaging changes (PBR28-PET, FA, MR Spectroscopy metabolites) in primary motor cortices and (b) severity of functional decline (ALSFRS-R). Hyperreflexia is the most frequent clinical UMN manifestation and correlates best with UMN molecular imaging changes in ALS. Among Penn UMNS's subdomains, hyperreflexia carries the weight of association with neuroimaging markers of biological changes in ALS. A clinical UMN scale comprising hyperreflexia items alone is clinically relevant and sufficient to predict the highest yield of molecular neuroimaging abnormalities in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Humanos , Espectroscopía de Resonancia Magnética , Neuronas Motoras , Neuroimagen
6.
Transl Psychiatry ; 11(1): 33, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431841

RESUMEN

The social motivation hypothesis of autism posits that autism spectrum disorder (ASD) is characterized by impaired motivation to seek out social experience early in life that interferes with the development of social functioning. This framework suggests that impaired mesolimbic dopamine function underlies compromised responses to social rewards in ASD. Although this hypothesis is supported by functional magnetic resonance imaging (fMRI) studies, no molecular imaging study has evaluated striatal dopamine functioning in response to rewards in ASD. Here, we examined striatal functioning during monetary incentive processing in ASD and controls using simultaneous positron emission tomography (PET) and fMRI. Using a bolus + infusion protocol with the D2/D3 dopamine receptor antagonist [11C]raclopride, voxel-wise binding potential (BPND) was compared between groups (controls = 12, ASD = 10) in the striatum. Striatal clusters showing significant between-group BPND differences were used as seeds in whole-brain fMRI general functional connectivity analyses. Relative to controls, the ASD group demonstrated decreased phasic dopamine release to incentives in the bilateral putamen and left caudate, as well as increased functional connectivity between a PET-derived right putamen seed and the precuneus and insula. Within the ASD group, decreased phasic dopamine release in the putamen was related to poorer theory-of-mind skills. Our findings that ASD is characterized by impaired striatal phasic dopamine release to incentives provide support for the social motivation hypothesis of autism. PET-fMRI may be a suitable tool to evaluate novel ASD therapeutics targeting the striatal dopamine system.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno Autístico/diagnóstico por imagen , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Dopamina , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Racloprida , Receptores de Dopamina D2/metabolismo
7.
Transl Psychiatry ; 10(1): 224, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641695

RESUMEN

The etiology of bipolar disorder (BD) is unknown and the neurobiological underpinnings are not fully understood. Both genetic and environmental factors contribute to the risk of BD, which may be linked through epigenetic mechanisms, including those regulated by histone deacetylase (HDAC) enzymes. This study measures in vivo HDAC expression in individuals with BD for the first time using the HDAC-specific radiotracer [11C]Martinostat. Eleven participants with BD and 11 age- and sex-matched control participants (CON) completed a simultaneous magnetic resonance - positron emission tomography (MR-PET) scan with [11C]Martinostat. Lower [11C]Martinostat uptake was found in the right amygdala of BD compared to CON. We assessed uptake in the dorsolateral prefrontal cortex (DLPFC) to compare previous findings of lower uptake in the DLPFC in schizophrenia and found no group differences in BD. Exploratory whole-brain voxelwise analysis showed lower [11C]Martinostat uptake in the bilateral thalamus, orbitofrontal cortex, right hippocampus, and right amygdala in BD compared to CON. Furthermore, regional [11C]Martinostat uptake was associated with emotion regulation in BD in fronto-limbic areas, which aligns with findings from previous structural, functional, and molecular neuroimaging studies in BD. Regional [11C]Martinostat uptake was associated with attention in BD in fronto-parietal and temporal regions. These findings indicate a potential role of HDACs in BD pathophysiology. In particular, HDAC expression levels may modulate attention and emotion regulation, which represent two core clinical features of BD.


Asunto(s)
Trastorno Bipolar , Trastorno Bipolar/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Histona Desacetilasas , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/metabolismo
8.
J Nucl Med ; 61(11): 1621-1627, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32169920

RESUMEN

Neuroinflammation has been implicated in amyotrophic lateral sclerosis (ALS) and can be visualized using translocator protein (TSPO) radioligands. To become a reliable pharmacodynamic biomarker for ALS multicenter trials, TSPO radioligands have some challenges to overcome. We aimed to investigate whether multicenter data pooling of different TSPO tracers (11C-PBR28 and 18F-DPA714) is feasible, after validation of an established 11C-PBR28 PET pseudo reference analysis technique for 18F-DPA714. Methods: Seven ALS patients from Belgium (58.9 ± 6.7 y old, 5 men and 2 women), 8 healthy volunteers from Belgium (52.1 ± 15.2 y old, 3 men and 5 women), 7 ALS patients from the United States (53.4 ± 9.8 y old, 5 men and 2 women), and 7 healthy volunteers from the United States (54.6 ± 9.6 y old, 4 men and 3 women) from a previously published study underwent dynamic 18F-DPA714 (Leuven, Belgium) or 11C-PBR28 (Boston, Massachusetts) PET/MRI. For 18F-DPA714, maps of total volume of distribution (VT) were compared with SUV ratio (SUVR) images from 40 to 60 min after injection (SUVR40-60) calculated using the pseudo reference regions cerebellum, occipital cortex, and whole brain (WB) without ventricles. For 11C-PBR28, SUVR images from 60 to 90 min after injection using the WB without ventricles were calculated. Results: In line with previous studies, increased 18F-DPA714 uptake (17.0% ± 5.6%) in primary motor cortices was observed in ALS subjects, as measured by both VT and SUVR40-60 approaches. The highest sensitivity was found for SUVR calculated using the WB without ventricles (average cluster, 21.6% ± 0.1%). 18F-DPA714 VT ratio was highly correlated with the SUVR40-60 (r > 0.8, P < 0.001). A similar pattern of increased uptake (average cluster, 20.5% ± 0.5%) in the primary motor cortices was observed in ALS subjects for 11C-PBR28 SUVR calculated using the WB without ventricles. Analysis of the 18F-DPA714 and 11C-PBR28 data together resulted in a more extensive pattern of significantly increased glial activation bilaterally in the primary motor cortices. Conclusion: The same pseudo reference region analysis technique for 11C-PBR28 PET can be extended toward 18F-DPA714 PET. Therefore, in ALS, standardized analysis across these 2 tracers enables pooling of TSPO PET data across multiple centers and increases the power of TSPO as a biomarker for future therapeutic trials.


Asunto(s)
Acetamidas/farmacocinética , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Radioisótopos de Carbono/farmacocinética , Radioisótopos de Flúor/farmacocinética , Tomografía de Emisión de Positrones/métodos , Pirazoles/farmacocinética , Piridinas/farmacocinética , Pirimidinas/farmacocinética , Receptores de GABA/metabolismo , Adulto , Anciano , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Ensayos Clínicos como Asunto , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad
9.
Nat Commun ; 10(1): 2945, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270332

RESUMEN

Age- and sex-related alterations in gene transcription have been demonstrated, however the underlying mechanisms are unresolved. Neuroepigenetic pathways regulate gene transcription in the brain. Here, we measure in vivo expression of the epigenetic enzymes, histone deacetylases (HDACs), across healthy human aging and between sexes using [11C]Martinostat positron emission tomography (PET) neuroimaging (n = 41). Relative HDAC expression increases with age in cerebral white matter, and correlates with age-associated disruptions in white matter microstructure. A post mortem study confirmed that HDAC1 and HDAC2 paralogs are elevated in white matter tissue from elderly donors. There are also sex-specific in vivo HDAC expression differences in brain regions associated with emotion and memory, including the amygdala and hippocampus. Hippocampus and white matter HDAC expression negatively correlates with emotion regulation skills (n = 23). Age and sex are associated with HDAC expression in vivo, which could drive age- and sex-related transcriptional changes and impact human behavior.


Asunto(s)
Encéfalo/fisiología , Epigénesis Genética , Caracteres Sexuales , Adamantano/análogos & derivados , Adamantano/farmacocinética , Adolescente , Adulto , Factores de Edad , Anciano , Encéfalo/diagnóstico por imagen , Radioisótopos de Carbono/farmacocinética , Emociones , Femenino , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Humanos , Ácidos Hidroxámicos/farmacocinética , Masculino , Persona de Mediana Edad , Donantes de Tejidos , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
10.
Psychol Med ; 48(10): 1738-1744, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29350124

RESUMEN

BACKGROUND: Individuals who were born very preterm have higher rates of psychiatric diagnoses compared with term-born controls; however, it remains unclear whether they also display increased sub-clinical psychiatric symptomatology. Hence, our objective was to utilize a dimensional approach to assess psychiatric symptomatology in adult life following very preterm birth. METHODS: We studied 152 adults who were born very preterm (before 33 weeks' gestation; gestational range 24-32 weeks) and 96 term-born controls. Participants' clinical profile was examined using the Comprehensive Assessment of At-Risk Mental States (CAARMS), a measure of sub-clinical symptomatology that yields seven subscales including general psychopathology, positive, negative, cognitive, behavioural, motor and emotional symptoms, in addition to a total psychopathology score. Intellectual abilities were examined using the Wechsler Abbreviated Scale of Intelligence. RESULTS: Between-group differences on the CAARMS showed elevated symptomatology in very preterm participants compared with controls in positive, negative, cognitive and behavioural symptoms. Total psychopathology scores were significantly correlated with IQ in the very preterm group only. In order to examine the characteristics of participants' clinical profile, a principal component analysis was conducted. This revealed two components, one reflecting a non-specific psychopathology dimension, and the other indicating a variance in symptomatology along a positive-to-negative symptom axis. K-means (k = 4) were used to further separate the study sample into clusters. Very preterm adults were more likely to belong to a high non-specific psychopathology cluster compared with controls.Conclusion and RelevanceVery preterm individuals demonstrated elevated psychopathology compared with full-term controls. Their psychiatric risk was characterized by a non-specific clinical profile and was associated with lower IQ.


Asunto(s)
Síntomas Conductuales/fisiopatología , Recien Nacido Extremadamente Prematuro/fisiología , Inteligencia/fisiología , Trastornos Mentales/fisiopatología , Medición de Riesgo/métodos , Adulto , Síntomas Conductuales/epidemiología , Femenino , Humanos , Recién Nacido , Masculino , Trastornos Mentales/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...