Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 150(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37812056

RESUMEN

The evolution of a unique craniofacial complex in vertebrates made possible new ways of breathing, eating, communicating and sensing the environment. The head and face develop through interactions of all three germ layers, the endoderm, ectoderm and mesoderm, as well as the so-called fourth germ layer, the cranial neural crest. Over a century of experimental embryology and genetics have revealed an incredible diversity of cell types derived from each germ layer, signaling pathways and genes that coordinate craniofacial development, and how changes to these underlie human disease and vertebrate evolution. Yet for many diseases and congenital anomalies, we have an incomplete picture of the causative genomic changes, in particular how alterations to the non-coding genome might affect craniofacial gene expression. Emerging genomics and single-cell technologies provide an opportunity to obtain a more holistic view of the genes and gene regulatory elements orchestrating craniofacial development across vertebrates. These single-cell studies generate novel hypotheses that can be experimentally validated in vivo. In this Review, we highlight recent advances in single-cell studies of diverse craniofacial structures, as well as potential pitfalls and the need for extensive in vivo validation. We discuss how these studies inform the developmental sources and regulation of head structures, bringing new insights into the etiology of structural birth anomalies that affect the vertebrate head.


Asunto(s)
Evolución Biológica , Cráneo , Animales , Humanos , Vertebrados , Cresta Neural/metabolismo , Biología Evolutiva , Regulación del Desarrollo de la Expresión Génica
2.
NPJ Regen Med ; 8(1): 51, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726321

RESUMEN

After traumatic injury, healing of mammalian ligaments is typically associated with fibrotic scarring as opposed to scar-free regeneration. In contrast, here we show that the ligament supporting the jaw joint of adult zebrafish is capable of rapid and complete scar-free healing. Following surgical transection of the jaw joint ligament, we observe breakdown of ligament tissue adjacent to the cut sites, expansion of mesenchymal tissue within the wound site, and then remodeling of extracellular matrix (ECM) to a normal ligament morphology. Lineage tracing of mature ligamentocytes following transection shows that they dedifferentiate, undergo cell cycle re-entry, and contribute to the regenerated ligament. Single-cell RNA sequencing of the regenerating ligament reveals dynamic expression of ECM genes in neural-crest-derived mesenchymal cells, as well as diverse immune cells expressing the endopeptidase-encoding gene legumain. Analysis of legumain mutant zebrafish shows a requirement for early ECM remodeling and efficient ligament regeneration. Our study establishes a new model of adult scar-free ligament regeneration and highlights roles of immune-mesenchyme cross-talk in ECM remodeling that initiates regeneration.

3.
bioRxiv ; 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36778403

RESUMEN

After traumatic injury, healing of mammalian ligaments is typically associated with fibrotic scarring as opposed to scar-free regeneration. In contrast, here we show that the ligament supporting the jaw joint of adult zebrafish is capable of rapid and complete scar-free healing. Following surgical transection of the jaw joint ligament, we observe breakdown of ligament tissue adjacent to the cut sites, expansion of mesenchymal tissue within the wound site, and then remodeling of extracellular matrix (ECM) to a normal ligament morphology. Lineage tracing of mature ligamentocytes following transection shows that they dedifferentiate, undergo cell cycle re-entry, and contribute to the regenerated ligament. Single-cell RNA sequencing of the regenerating ligament reveals dynamic expression of ECM genes in neural-crest-derived mesenchymal cells, as well as diverse immune cells expressing the endopeptidase-encoding gene legumain . Analysis of legumain mutant zebrafish shows a requirement for early ECM remodeling and efficient ligament regeneration. Our study establishes a new model of adult scar-free ligament regeneration and highlights roles of immune-mesenchyme cross-talk in ECM remodeling that initiates regeneration. Highlights: Rapid regeneration of the jaw joint ligament in adult zebrafishDedifferentiation of mature ligamentocytes contributes to regenerationscRNAseq reveals dynamic ECM remodeling and immune activation during regenerationRequirement of Legumain for ECM remodeling and ligament healing.

4.
Nat Commun ; 13(1): 13, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013168

RESUMEN

The cranial neural crest generates a huge diversity of derivatives, including the bulk of connective and skeletal tissues of the vertebrate head. How neural crest cells acquire such extraordinary lineage potential remains unresolved. By integrating single-cell transcriptome and chromatin accessibility profiles of cranial neural crest-derived cells across the zebrafish lifetime, we observe progressive and region-specific establishment of enhancer accessibility for distinct fates. Neural crest-derived cells rapidly diversify into specialized progenitors, including multipotent skeletal progenitors, stromal cells with a regenerative signature, fibroblasts with a unique metabolic signature linked to skeletal integrity, and gill-specific progenitors generating cell types for respiration. By retrogradely mapping the emergence of lineage-specific chromatin accessibility, we identify a wealth of candidate lineage-priming factors, including a Gata3 regulatory circuit for respiratory cell fates. Rather than multilineage potential being established during cranial neural crest specification, our findings support progressive and region-specific chromatin remodeling underlying acquisition of diverse potential.


Asunto(s)
Diferenciación Celular/fisiología , Cresta Neural , Análisis de la Célula Individual , Pez Cebra/embriología , Animales , Cromatina , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/citología , Cresta Neural/metabolismo , Análisis de la Célula Individual/métodos , Cráneo/citología , Transcriptoma , Pez Cebra/metabolismo
5.
NPJ Regen Med ; 6(1): 77, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815400

RESUMEN

Osteoarthritis (OA) impacts hundreds of millions of people worldwide, with those affected incurring significant physical and financial burdens. Injuries such as focal defects to the articular surface are a major contributing risk factor for the development of OA. Current cartilage repair strategies are moderately effective at reducing pain but often replace damaged tissue with biomechanically inferior fibrocartilage. Here we describe the development, transcriptomic ontogenetic characterization and quality assessment at the single cell level, as well as the scaled manufacturing of an allogeneic human pluripotent stem cell-derived articular chondrocyte formulation that exhibits long-term functional repair of porcine articular cartilage. These results define a new potential clinical paradigm for articular cartilage repair and mitigation of the associated risk of OA.

6.
Nat Commun ; 12(1): 4797, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376651

RESUMEN

Sutures separate the flat bones of the skull and enable coordinated growth of the brain and overlying cranium. The coronal suture is most commonly fused in monogenic craniosynostosis, yet the unique aspects of its development remain incompletely understood. To uncover the cellular diversity within the murine embryonic coronal suture, we generated single-cell transcriptomes and performed extensive expression validation. We find distinct pre-osteoblast signatures between the bone fronts and periosteum, a ligament-like population above the suture that persists into adulthood, and a chondrogenic-like population in the dura mater underlying the suture. Lineage tracing reveals an embryonic Six2+ osteoprogenitor population that contributes to the postnatal suture mesenchyme, with these progenitors being preferentially affected in a Twist1+/-; Tcf12+/- mouse model of Saethre-Chotzen Syndrome. This single-cell atlas provides a resource for understanding the development of the coronal suture and the mechanisms for its loss in craniosynostosis.


Asunto(s)
Suturas Craneales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Osteogénesis/genética , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Acrocefalosindactilia/embriología , Acrocefalosindactilia/genética , Acrocefalosindactilia/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Suturas Craneales/citología , Suturas Craneales/embriología , Duramadre/citología , Duramadre/embriología , Duramadre/metabolismo , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Noqueados , Ratones Transgénicos , Osteoblastos/citología , Osteoblastos/metabolismo , RNA-Seq/métodos , Cráneo/citología , Cráneo/embriología , Cráneo/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
7.
Elife ; 102021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33501917

RESUMEN

The specification of cartilage requires Sox9, a transcription factor with broad roles for organogenesis outside the skeletal system. How Sox9 and other factors gain access to cartilage-specific cis-regulatory regions during skeletal development was unknown. By analyzing chromatin accessibility during the differentiation of neural crest cells into chondrocytes of the zebrafish head, we find that cartilage-associated chromatin accessibility is dynamically established. Cartilage-associated regions that become accessible after neural crest migration are co-enriched for Sox9 and Fox transcription factor binding motifs. In zebrafish lacking Foxc1 paralogs, we find a global decrease in chromatin accessibility in chondrocytes, consistent with a later loss of dorsal facial cartilages. Zebrafish transgenesis assays confirm that many of these Foxc1-dependent elements function as enhancers with region- and stage-specific activity in facial cartilages. These results show that Foxc1 promotes chondrogenesis in the face by establishing chromatin accessibility at a number of cartilage-associated gene enhancers.


Animals with backbones (or vertebrates) have body shape determined, in part, by their skeletons. These emerge in the embryo in the form of cartilage structures that will then get replaced by bone during development. The neural crest is a group of embryonic cells that can become different tissues. In the head, it forms the cartilage scaffold for some of the facial bones and the base of the skull. During this process, a protein called Sox9 is required for neural crest cells to morph into cartilage. This transcription factor binds to regulatory sequences in the genome to turn cartilage genes on. But Sox9 is also required to form non-cartilage tissues in organs such as the liver, lung, and kidneys. How, then, does Sox9 only turn on the genes required for cartilage formation in the embryonic face? This specificity can be controlled by which regulatory sequences Sox9 can physically access in a cell: controlling which regulatory sequences Sox9 can access determines which genes it can activate, and which type of tissue a cell will become. Xu, Yu et al. wanted to understand exactly how Sox9 switches on the genes that turn neural crest cells into facial cartilage. They studied the genomes of zebrafish embryos, which have a cartilaginous skeleton similar to other vertebrates, and found out which areas were accessible to transcription factors in the neural crest cells that became facial cartilage. Analyzing these regions suggested that sites where Sox9 could bind were often close to binding sites for another protein, called Foxc1. When zebrafish embryos were genetically modified to inactivate Foxc1 proteins, many of the regulatory sequences in cartilage failed to become accessible, and the cartilaginous skeleton did not form properly. These results support a model in which Foxc1 opens up the genomic regions that Sox9 needs to bind for cartilage to form, as opposed to the regions that Sox9 would bind to make different organ cell types. The findings of Xu, Yu et al. uncover the stepwise process by which cartilage cells are made during development. Further research based on these results could allow scientists to develop new ways of replacing cartilage in degenerative conditions such as arthritis.


Asunto(s)
Condrogénesis , Factores de Transcripción Forkhead/genética , Cráneo/embriología , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Cartílago/embriología , Diferenciación Celular , Condrocitos/metabolismo , Embrión no Mamífero/embriología , Factores de Transcripción Forkhead/metabolismo , Cresta Neural/embriología , Proteínas de Pez Cebra/metabolismo
8.
Front Cell Dev Biol ; 9: 777787, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127702

RESUMEN

The poor intrinsic repair capacity of mammalian joint cartilage likely contributes to the high incidence of arthritis worldwide. Adult zebrafish can regenerate many structures that show limited or no healing capacity in mammals, including the jawbone. To test whether zebrafish can also regenerate damaged joints, we developed a surgical injury model in which the zebrafish jaw joint is destabilized via transection of the major jaw joint ligament, the interopercular-mandibular (IOM). Unilateral transection of the IOM ligament in 1-year-old fish resulted in an initial reduction of jaw joint cartilage by 14 days, with full regeneration of joint cartilage by 28 days. Joint cartilage regeneration involves the re-entry of articular chondrocytes into the cell cycle and the upregulated expression of sox10, a marker of developing chondrocytes in the embryo that becomes restricted to a subset of joint chondrocytes in adults. Genetic ablation of these sox10-expressing chondrocytes shows that they are essential for joint cartilage regeneration. To uncover the potential source of new chondrocytes during joint regeneration, we performed single-cell RNA sequencing of the uninjured adult jaw joint and identified multiple skeletal, connective tissue, and fibroblast subtypes. In particular, we uncovered a joint-specific periosteal population expressing coch and grem1a, with the jaw joint chondrocytes marked by grem1a expression during regeneration. Our findings demonstrate the capacity of zebrafish to regenerate adult joint cartilage and identify candidate cell types that can be tested for their roles in regenerative response.

9.
Science ; 370(6515): 463-467, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33093109

RESUMEN

Vertebrate sensory organs arise from epithelial thickenings called placodes. Along with neural crest cells, cranial placodes are considered ectodermal novelties that drove evolution of the vertebrate head. The anterior-most placode generates the endocrine lobe [adenohypophysis (ADH)] of the pituitary, a master gland controlling growth, metabolism, and reproduction. In addition to known ectodermal contributions, we use lineage tracing and time-lapse imaging in zebrafish to identify an endodermal contribution to the ADH. Single-cell RNA sequencing of the adult pituitary reveals similar competency of endodermal and ectodermal epithelia to generate all endocrine cell types. Further, endoderm can generate a rudimentary ADH-like structure in the near absence of ectodermal contributions. The fish condition supports the vertebrate pituitary arising through interactions of an ancestral endoderm-derived proto-pituitary with newly evolved placodal ectoderm.


Asunto(s)
Endodermo/embriología , Adenohipófisis/embriología , Animales , Linaje de la Célula , Endodermo/citología , Adenohipófisis/citología , RNA-Seq , Análisis de la Célula Individual , Pez Cebra
10.
Cancer Res ; 80(23): 5257-5269, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33046442

RESUMEN

NAD-dependent deacetylase sirtuin-1 (SIRT1) is a class III histone deacetylase that positively regulates cancer-related pathways such as proliferation and stress resistance. SIRT1 has been shown to promote progression of colorectal cancer and is associated with cancer stemness, yet the precise mechanism between colorectal cancer stemness and SIRT1 remains to be further clarified. Here we report that SIRT1 signaling regulates colorectal cancer stemness by enhancing expression of CD24, a colorectal cancer stemness promoter. A novel miRNA, miR-1185-1, suppressed the expression of CD24 by targeting its 3'UTR (untranslated region) and could be inhibited by SIRT1 via histone deacetylation. Targeting SIRT1 by RNAi led to elevated H3 lysine 9 acetylation on the promoter region of miR-1185-1, which increased expression of miR-1185-1 and further repressed CD24 translation and colorectal cancer stemness. In a mouse xenograft model, overexpression of miR-1185-1 in colorectal cancer cells substantially reduced tumor growth. In addition, expression of miR-1185-1 was downregulated in human colorectal cancer tissues, whereas expression of CD24 was increased. In conclusion, this study not only demonstrates the essential roles of a SIRT1-miR-1185-1-CD24 axis in both colorectal cancer stemness properties and tumorigenesis but provides a potential therapeutic target for colorectal cancer treatment. SIGNIFICANCE: A novel tumor suppressor miR-1185-1 is involved in molecular regulation of CD24- and SIRT1-related cancer stemness networks, marking it a potential therapeutic target in colorectal cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/23/5257/F1.large.jpg.


Asunto(s)
Antígeno CD24/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , MicroARNs/genética , Sirtuina 1/metabolismo , Regiones no Traducidas 3' , Animales , Antígeno CD24/genética , Movimiento Celular/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Histonas/genética , Histonas/metabolismo , Humanos , Ratones Desnudos , Células Madre Neoplásicas/patología , Sirtuina 1/genética , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Oncotarget ; 8(2): 2604-2616, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27911878

RESUMEN

Y-box binding protein-1 (YB-1) is a pleiotropic molecule that binds DNA to regulate genes on a transcriptional level in the nucleus and binds RNA to modulate gene translation in the cytoplasm. In our previous studies, YB-1 was also characterized as a fetal hepatic protein that regulates the maturation of hepatocytes and is upregulated during liver regeneration. Moreover, YB-1 has been shown to be expressed in human hepatocellular carcinoma (HCC). However, the role of YB-1 in HCC remains unclear. Here, we aimed to characterize the role of YB-1 in HCC. Based on the results of loss-of-function in HCC and gain-of-function in mice liver using hydrodynamic gene delivery, YB-1 promoted hepatic cells proliferation in vitro and in vivo. YB-1 was also involved in HCC cell proliferation, migration, and drug-resistance. The results of extreme limiting dilution sphere forming analysis and cancer initiating cell marker analysis were also shown that YB-1 maintained HCC initiating cells population. YB-1 also induced the epithelial-mesenchymal transition and stemness-related gene expression. Knockdown of YB-1 suppressed the expression of Wnt ligands and ß-catenin, impaired Wnt/ß-catenin signaling pathway and reduced the numbers of HCC initiating cells. Moreover, YB-1 displayed nuclear localization particularly in the HCC initiating cells, the EpCAM+ cells or sphere cells. Our findings suggested that YB-1 was a key factor in HCC tumorigenesis and maintained the HCC initiating cell population.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Resistencia a Antineoplásicos , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Trasplante de Neoplasias , Análisis de Supervivencia , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...