Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; : 5728-5737, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771736

RESUMEN

Nitrogen-doped carbon dots (NCDs) featuring primary pyrrolic N and pyridinic N dominated configurations were prepared using hydrothermal (H-NCDs) and microwave (M-NCDs) methods, respectively. These H-NCDs and M-NCDs were subsequently applied to decorate CsPbBr3 nanocrystals (CPB NCs) individually, using a ligand-assisted reprecipitation process. Both CPB/M-NCDs and CPB/H-NCDs nanoheterostructures (NHSs) exhibited S-scheme charge transfer behavior, which enhanced their performance in photocatalytic CO2 reduction and selectivity of CO2-to-CH4 conversion, compared to pristine CPB NCs. The presence of pyrrolic N configuration at the heterojunction of CPB/H-NCDs facilitated efficient S-scheme charge transfer, leading to a remarkable 43-fold increase in photoactivity. In contrast, CPB/M-NCDs showed only a modest 3-fold enhancement in photoactivity, which was attributed to electron trapping by pyridinic N at the heterojunction. The study offers crucial insights into charge carrier dynamics within perovskite/carbon NHSs at the molecular level to advance the understanding of solar fuel generation.

3.
Biosens Bioelectron ; 241: 115648, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37690354

RESUMEN

Doping sorted graphene quantum dots (GQDs) with heteroatoms and functionalizing them with amino acid could improve their radiative recombination and two-photon properties-including their excitation-wavelength-independent photoluminescence from the ultraviolet to the near-infrared-I (NIR-I) region, absorption, quantum yield, absolute cross section, lifetime, and radiative-to-nonradiative decay ratio-under two-photon excitation (TPE) at a low excitation energy and short photoexcitation duration, as determined using a self-made optical microscopy system with a femtosecond Ti-sapphire laser. Four types of sorted GQDs were investigated: undoped GQDs, nitrogen-doped GQDs (N-GQDs), amino-functionalized GQDs (amino-GQDs), and N-doped and amino-functionalized GQDs (amino-N-GQDs). Among them, the sorted amino-N-GQDs are effective as a two-photon photosensitizer and generate the highest quantity of reactive oxygen species for the elimination of multidrug-resistant cancer cells through two-photon photodynamic therapy (PDT). Larger amino-N-GQDs result in a greater number of C-N and N-functionalities, leading to a superior photochemical effect and more favorable intrinsic luminescence properties, making the dots effective contrast agents for tracking and localizing cancer cells during in-depth bioimaging in a three-dimensional biological environment under TPE in the NIR-II region. Overall, this study highlights the potential of large amino-N-GQDs as a material for future application to dual-modality two-photon PDT and biomedical imaging.


Asunto(s)
Técnicas Biosensibles , Grafito , Fotoquimioterapia , Puntos Cuánticos , Grafito/química , Iluminación , Resistencia a Múltiples Medicamentos , Puntos Cuánticos/química , Resistencia a Antineoplásicos , Fotoquimioterapia/métodos
4.
J Phys Chem Lett ; 14(1): 122-131, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36574643

RESUMEN

The photon energy-dependent selectivity of photocatalytic CO2-to-CO conversion by CsPbBr3 nanocrystals (NCs) and CsPbBr3/g-C3N4 nanoheterostructures (NHSs) was demonstrated for the first time. The surficial capping ligands of CsPbBr3 NCs would adsorb CO2, resulting in the carboxyl intermediate to process the CO2-to-CO conversion via carbene pathways. The type-II energy band structure at the heterojunction of CsPbBr3/g-C3N4 NHSs would separate the charge carriers, promoting the efficiency in photocatalytic CO2-to-CO conversion. The electron consumption rate of CO2-to-CO conversion for CsPbBr3/g-C3N4 NHSs was found to intensively depend on the rate constant of interfacial hole transfer from CsPbBr3 to g-C3N4. An in situ transient absorption spectroscopy investigation revealed that the half-life time of photoexcited electrons in optimized CsPbBr3/g-C3N4 NHS was extended two times more than that in the CsPbBr3 NCs, resulting in the higher probability of charge carriers to carry out the CO2-to-CO conversion. The current work presents important and novel insights of semiconductor NHSs for solar energy-driven CO2 conversion.

5.
ACS Appl Mater Interfaces ; 14(21): 24919-24928, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35574762

RESUMEN

The photoactivity of nanoporous bismuth vanadate (BiVO4, BVO) photoanodes that were fabricated by a two-step process (electrodeposition and then thermal conversion) in photoelectrochemical (PEC) hydrogen (H2) evolution can be enhanced about 1.44-fold by improving the constitutive ratio of (111̅), (061), and (242̅) crystal facets. The PEC characterization was carried out to investigate the factors altering the performance, which revealed that the crystal facet modulation could improve the photoactivity of the BVO photoanodes. In addition, the orientation-controlled BVO thin-film electrodes are introduced as evidence that the present crystal facet modulation is the positive effect for BVO photoanodes in PEC. The investigation of energy band structures and interfacial charge carrier dynamics of the BVO photoanodes reveals that the crystal facet modulation could result in a shorter lifetime of charge carrier recombination and larger band bending at the interface between BVO and electrolytes. This outcome could improve the charge separation and charge transfer efficiencies of BVO photoanodes, promoting the efficiency of PEC H2 evolution. Moreover, this crystal facet modulation can combine with co-catalyst decoration to further improve the solar-to-hydrogen efficiency of BVO photoanodes in PEC. This study presents a potential strategy to promote the PEC activity by crystal facet modulation and important insights into the interfacial charge transfer properties of semiconductor photoelectrodes for the application in solar fuel generation.

6.
J Phys Chem Lett ; 12(30): 7194-7200, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34309384

RESUMEN

Red-light-emitting InP/ZnSexS1-x core/shell quantum dots (QDs) were prepared by one-pot synthesis with optimal hydrogen fluoride (HF) treatment. Most of the surficial oxidative species could be removed, and the dangling bonds would be passivated by Zn ions for the InP cores during HF treatment, which would be beneficial to the subsequent ZnSexS1-x shell coating. Three-dimensional time-resolved photoluminescence spectra of the QD samples were analyzed by singular value decomposition global fitting to determine the radiative and nonradiative lifetimes of charge carriers. A proposed model illustrated that the charge carriers in the InP/ZnSexS1-x QDs with interfacial oxidative layer removal would evidently recombine through radiative pathways, mainly from the conduction band to the valence band (lifetime, 33 ns) and partially from the trap states (lifetime, 150 ns). This work offers the important physical insight into the charge carrier dynamics of low-toxicity QDs which have the desired optical properties for optoelectronic applications.

7.
ACS Appl Mater Interfaces ; 8(44): 30467-30474, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27753472

RESUMEN

A graphene quantum dot (GQD) used as the photosensitizer with high two-photon absorption in the near-infrared region, a large absolute cross section of two-photon excitation (TPE), strong two-photon luminescence, and impressive two-photon stability could be used for dual modality two-photon photodynamic therapy (PDT) and two-photon bioimaging with an ultrashot pulse laser (or defined as TPE). In this study, a GQD efficiently generated reactive oxygen species coupled with TPE, which highly increased the effective PDT ability of both Gram-positive and -negative bacteria, with ultralow energy and an extremely short photoexcitation time generated by TPE. Because of its two-photon properties, a GQD could serve as a promising two-photon contrast agent for observing specimens in depth in three-dimensional biological environments while simultaneously proceeding with PDT action to eliminate bacteria, particularly in multidrug-resistant (MDR) strains. This procedure would provide an efficient alternative approach to easily cope with MDR bacteria.


Asunto(s)
Grafito , Antiinfecciosos , Medios de Contraste , Fotoquimioterapia , Puntos Cuánticos
8.
Nanoscale ; 8(38): 16874-16880, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27722374

RESUMEN

Few studies have investigated the two-photon properties of graphene quantum dots (GQDs) and GQD-conjugated polymers. The results of the present study revealed that conjugated polymers containing nitrogen and sulfur atoms caused higher quantum confinement of emissive energy to be trapped on the surface of nanomaterials, resulting in a high-photoluminescence quantum yield and notable two-photon properties. Additionally, the nanomaterials generated no reactive oxygen species-dependent oxidative stress on cells and served as promising two-photon contrast probes.

9.
Nanoscale ; 2(12): 2639-46, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20967388

RESUMEN

The effect of surface plasmon resonance (SPR) on the blinking emission of photoluminescence from noble metal nanostructures still requires further investigation in quantum mechanics and limits their applications. We investigate one photon luminescent emission intermittency of noble metal nanostructures with differently sized sea-urchin-shaped nanoparticles, known as nano-sea-urchins (NSUs). The probability of the "on" process in one photon luminescent emission intermittency of NSUs increases due to the strong electric field of SPR. This mechanism is explained by the reaction potential threshold model we propose here. Furthermore, the ameliorated photoluminescence of NSUs is strong enough to excite waterweed bioluminescence and can act as an in vivo bio-light emitting device, which has potential applications in cytotoxicity, bio-imaging and bio-labeling.


Asunto(s)
Oro/química , Nanoestructuras/química , Erizos de Mar/química , Animales , Bacopa/química , Clorofila/química , Nanopartículas del Metal/química , Hojas de la Planta/química , Espectrometría de Fluorescencia , Resonancia por Plasmón de Superficie , Termodinámica
10.
Int J Oncol ; 25(3): 661-70, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15289867

RESUMEN

Colorectal carcinoma is a human malignant tumor, which is very resistant to currently available methods of treatment. Therefore, developing an effective agent with anti-colorectal carcinoma activity is important. In the present study, 8 structurally related flavones including flavone, 3-OH flavone, 5-OH flavone, 7-OH flavone, quercetin, kaempferol, quercetin, and morin were used to study their effects on colorectal carcinoma cells (HT29, COLO205, COLO320-HSR). Results of MTT assay indicated that flavone shows the most potent cytoxic effect among them on these three cell types. The cytotoxicity induced by flavone is mediated by inducing the occurrence of apoptosis characterized by the appearance of DNA ladders, apoptotic bodies and hypodiploid cells. Activation of caspase 3 protein procession and enzyme activity with inducing cleavage of caspase 3 substrates PARP was identified in flavone-treated cells, and an inhibitory peptide Ac-DEVD-FMK for caspase 3, but not Ac-YVAD-FMK for caspase 1, attenuates the cytotoxic effect of flavone in COLO205 and HT29 cells. Elevation of p21 but no p53 protein was observed in flavone-treated cells. Increasing intracellular peroxide level was detected in flavone-treated cells by DCHF-DA assay, and antioxidants such as tiron, catalase, SOD, PDTC, but not DPI, suppress flavone-induced cytotoxic effect. In vivo anti-tumor study indicates that flavone exhibits ability to inhibit tumor formation elicited by s.c. injection of COLO205 cells in nude mice, and apoptotic cells and an increase in p21, but not p53, protein were observed in tumor tissues derived from flavone-treated group. Additionally, flavone induced apoptosis in primary colon carcinoma cells COLO205-X with appearance of DNA ladders, caspase 3 protein procession, PARP protein cleavage, and an increase in p21 (not p53) protein. These data provide evidence to suggest that flavone is an effective agent to induce apoptosis in colorectal carcinoma cells in vitro and in vivo; activation of caspase 3, ROS production, and increasing p21 protein are involved.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis , Carcinoma/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Flavonoides/uso terapéutico , Animales , Antineoplásicos/farmacología , Carcinoma/metabolismo , Caspasa 3 , Caspasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Flavonas , Flavonoides/farmacología , Humanos , Masculino , Ratones , Trasplante de Neoplasias/patología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...