Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Microbiol ; 21(10): e13085, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31290210

RESUMEN

Staphylococcus aureus is frequently isolated from patients with community-acquired pneumonia and acute respiratory distress syndrome (ARDS). ARDS is associated with staphylococcal phosphatidylinositol-specific phospholipase C (PI-PLC); however, the role of PI-PLC in the pathogenesis and progression of ARDS remains unknown. Here, we showed that recombinant staphylococcal PI-PLC possesses enzyme activity that causes shedding of glycosylphosphatidylinositol-anchored CD55 and CD59 from human umbilical vein endothelial cell surfaces and triggers cell lysis via complement activity. Intranasal infection with PI-PLC-positive S. aureus resulted in greater neutrophil infiltration and increased pulmonary oedema compared with a plc-isogenic mutant. Although indistinguishable proinflammatory genes were induced, the wild-type strain activated higher levels of C5a in lung tissue accompanied by elevated albumin instillation and increased lactate dehydrogenase release in bronchoalveolar lavage fluid compared with the plc- mutant. Following treatment with cobra venom factor to deplete complement, the wild-type strain with PI-PLC showed a reduced ability to trigger pulmonary permeability and tissue damage. PI-PLC-positive S. aureus induced the formation of membrane attack complex, mainly on type II pneumocytes, and reduced the level of CD55/CD59, indicating the importance of complement regulation in pulmonary injury. In conclusion, S. aureus PI-PLC sensitised tissue to complement activation leading to more severe tissue damage, increased pulmonary oedema, and ARDS progression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Sistema Complemento/metabolismo , Fosfoinositido Fosfolipasa C/metabolismo , Edema Pulmonar/inmunología , Edema Pulmonar/microbiología , Síndrome de Dificultad Respiratoria/microbiología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/enzimología , Células Epiteliales Alveolares/enzimología , Células Epiteliales Alveolares/inmunología , Células Epiteliales Alveolares/microbiología , Animales , Proteínas Bacterianas/genética , Antígenos CD55/inmunología , Antígenos CD59/inmunología , Citocinas/metabolismo , Glicosilfosfatidilinositoles/inmunología , Glicosilfosfatidilinositoles/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos BALB C , Fosfoinositido Fosfolipasa C/genética , Edema Pulmonar/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/metabolismo , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
2.
Respir Res ; 19(1): 187, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30253765

RESUMEN

BACKGROUND: Streptococcus pneumoniae is a respiratory pathogen causing severe lung infection that may lead to complications such as bacteremia. Current polysaccharide vaccines have limited serotype coverage and therefore cannot provide maximal and long-term protection. Global efforts are being made to develop a conserved protein vaccine candidate. PrtA, a pneumococcal surface protein, was identified by screening a pneumococcal genomic expression library using convalescent patient serum. The prtA gene is prevalent and conserved among S. pneumoniae strains. Its protective efficacy, however, has not been described. Mucosal immunization could sensitize both local and systemic immunity, which would be an ideal scenario for preventing S. pneumoniae infection. METHODS: We immunized BALB/c mice intranasally with a combination of a PrtA fragment (amino acids 144-1041) and Th17 potentiated adjuvant, curdlan. We then measured the T-cell and antibody responses. The protective efficacy conferred to the immunized mice was further evaluated using a murine model of acute pneumococcal pneumonia and pneumococcal bacteremia. RESULTS: There was a profound antigen-specific IL-17A and IFN-γ response in PrtA-immunized mice compared with that of adjuvant control group. Even though PrtA-specific IgG and IgA titer in sera was elevated in immunized mice, only a moderate IgA response was observed in the bronchoalveolar lavage fluid. The PrtA-immunized antisera facilitated the activated murine macrophage, RAW264.7, to opsonophagocytose S. pneumoniae D39 strain; however, PrtA-specific immunoglobulins bound to pneumococcal surfaces with a limited potency. Finally, PrtA-induced immune reactions failed to protect mice against S. pneumoniae-induced acute pneumonia and bacterial propagation through the blood. CONCLUSIONS: Immunization with recombinant PrtA combined with curdlan produced antigen-specific antibodies and elicited IL-17A response. However, it failed to protect the mice against S. pneumoniae-induced infection.


Asunto(s)
Proteínas Bacterianas/administración & dosificación , Inmunización/métodos , Vacunas Neumococicas/administración & dosificación , Neumonía Neumocócica/prevención & control , Streptococcus pneumoniae , Animales , Proteínas Bacterianas/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Fagocitosis/efectos de los fármacos , Fagocitosis/fisiología , Vacunas Neumococicas/inmunología , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/metabolismo , Células RAW 264.7 , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/inmunología
4.
Nat Commun ; 8(1): 56, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28676626

RESUMEN

Upon environmental changes, proliferating cells delay cell cycle to prevent further damage accumulation. Yeast Cip1 is a Cdk1 and Cln2-associated protein. However, the function and regulation of Cip1 are still poorly understood. Here we report that Cip1 expression is co-regulated by the cell-cycle-mediated factor Mcm1 and the stress-mediated factors Msn2/4. Overexpression of Cip1 arrests cell cycle through inhibition of Cdk1-G1 cyclin complexes at G1 stage and the stress-activated protein kinase-dependent Cip1 T65, T69, and T73 phosphorylation may strengthen the Cip1and Cdk1-G1 cyclin interaction. Cip1 accumulation mainly targets Cdk1-Cln3 complex to prevent Whi5 phosphorylation and inhibit early G1 progression. Under osmotic stress, Cip1 expression triggers transient G1 delay which plays a functionally redundant role with another hyperosmolar activated CKI, Sic1. These findings indicate that Cip1 functions similarly to mammalian p21 as a stress-induced CDK inhibitor to decelerate cell cycle through G1 cyclins to cope with environmental stresses.A G1 cell cycle regulatory kinase Cip1 has been identified in budding yeast but how this is regulated is unclear. Here the authors identify cell cycle (Mcm1) and stress-mediated (Msn 2/4) transcription factors as regulating Cip1, causing stress induced CDK inhibition and delay in cell cycle progression.


Asunto(s)
Ciclo Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ciclinas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína 1 de Mantenimiento de Minicromosoma/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Presión Osmótica , Saccharomyces cerevisiae , Estrés Fisiológico , Factores de Transcripción/metabolismo
5.
Nucleic Acids Res ; 45(14): 8314-8328, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28575419

RESUMEN

Telomere homeostasis is controlled by both telomerase machinery and end protection. Telomere shortening induces DNA damage sensing kinases ATM/ATR for telomerase recruitment. Yet, whether telomere shortening also governs end protection is poorly understood. Here we discover that yeast ATM/ATR controls end protection. Rap1 is phosphorylated by Tel1 and Mec1 kinases at serine 731, and this regulation is stimulated by DNA damage and telomere shortening. Compromised Rap1 phosphorylation hampers the interaction between Rap1 and its interacting partner Rif1, which thereby disturbs the end protection. As expected, reduction of Rap1-Rif1 association impairs telomere length regulation and increases telomere-telomere recombination. These results indicate that ATM/ATR DNA damage checkpoint signal contributes to telomere protection by strengthening the Rap1-Rif1 interaction at short telomeres, and the checkpoint signal oversees both telomerase recruitment and end capping pathways to maintain telomere homeostasis.


Asunto(s)
Retroalimentación Fisiológica , Homeostasis del Telómero/genética , Acortamiento del Telómero/genética , Telómero/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Western Blotting , Daño del ADN , Modelos Genéticos , Mutación , Fosforilación , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/genética , Serina/metabolismo , Complejo Shelterina , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
6.
PLoS One ; 12(1): e0168734, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28046129

RESUMEN

The caterpillar fungus Ophiocordyceps sinensis (previously called Cordyceps sinensis) has been used for centuries in Asia as a tonic to improve health and longevity. Recent studies show that O. sinensis produces a wide range of biological effects on cells, laboratory animals and humans, including anti-fatigue, anti-infection, anti-inflammatory, antioxidant, and anti-tumor activities. In view of the rarity of O. sinensis fruiting bodies in nature, cultivation of its anamorph mycelium represents a useful alternative for large-scale production. However, O. sinensis fruiting bodies harvested in nature harbor several fungal contaminants, a phenomenon that led to the isolation and characterization of a large number of incorrect mycelium strains. We report here the isolation of a mycelium from a fruiting body of O. sinensis and we identify the isolate as O. sinensis' anamorph (also called Hirsutella sinensis) based on multi-locus sequence typing of several fungal genes (ITS, nrSSU, nrLSU, RPB1, RPB2, MCM7, ß-tubulin, TEF-1α, and ATP6). The main characteristics of the isolated mycelium, including its optimal growth at low temperature (16°C) and its biochemical composition, are similar to that of O. sinensis fruiting bodies, indicating that the mycelium strain characterized here may be used as a substitute for the rare and expensive O. sinensis fruiting bodies found in nature.


Asunto(s)
Cordyceps/clasificación , Micelio/crecimiento & desarrollo , Filogenia , Cromatografía Líquida de Alta Presión , Cordyceps/genética , Cordyceps/aislamiento & purificación , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Tipificación de Secuencias Multilocus , Técnicas de Tipificación Micológica
7.
Nat Rev Endocrinol ; 13(3): 149-160, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27636731

RESUMEN

Obesity is reaching global epidemic proportions as a result of factors such as high-calorie diets and lack of physical exercise. Obesity is now considered to be a medical condition, which not only contributes to the risk of developing type 2 diabetes mellitus, cardiovascular disease and cancer, but also negatively affects longevity and quality of life. To combat this epidemic, anti-obesogenic approaches are required that are safe, widely available and inexpensive. Several plants and mushrooms that are consumed in traditional Chinese medicine or as nutraceuticals contain antioxidants, fibre and other phytochemicals, and have anti-obesogenic and antidiabetic effects through the modulation of diverse cellular and physiological pathways. These effects include appetite reduction, modulation of lipid absorption and metabolism, enhancement of insulin sensitivity, thermogenesis and changes in the gut microbiota. In this Review, we describe the molecular mechanisms that underlie the anti-obesogenic and antidiabetic effects of these plants and mushrooms, and propose that combining these food items with existing anti-obesogenic approaches might help to reduce obesity and its complications.


Asunto(s)
Agaricales , Diabetes Mellitus Tipo 2/dietoterapia , Suplementos Dietéticos , Medicamentos Herbarios Chinos/administración & dosificación , Hipoglucemiantes/administración & dosificación , Obesidad/dietoterapia , Diabetes Mellitus Tipo 2/metabolismo , Dietoterapia/métodos , Medicamentos Herbarios Chinos/aislamiento & purificación , Humanos , Hipoglucemiantes/aislamiento & purificación , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Plantas , Polisacáridos/administración & dosificación , Polisacáridos/aislamiento & purificación , Resultado del Tratamiento
8.
Sci Rep ; 6: 36747, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27845335

RESUMEN

Iron availability affects swarming and biofilm formation in various bacterial species. However, how bacteria sense iron and coordinate swarming and biofilm formation remains unclear. Using Serratia marcescens as a model organism, we identify here a stage-specific iron-regulatory machinery comprising a two-component system (TCS) and the TCS-regulated iron chelator 2-isocyano-6,7-dihydroxycoumarin (ICDH-Coumarin) that directly senses and modulates environmental ferric iron (Fe3+) availability to determine swarming initiation and biofilm formation. We demonstrate that the two-component system RssA-RssB (RssAB) directly senses environmental ferric iron (Fe3+) and transcriptionally modulates biosynthesis of flagella and the iron chelator ICDH-Coumarin whose production requires the pvc cluster. Addition of Fe3+, or loss of ICDH-Coumarin due to pvc deletion results in prolonged RssAB signaling activation, leading to delayed swarming initiation and increased biofilm formation. We further show that ICDH-Coumarin is able to chelate Fe3+ to switch off RssAB signaling, triggering swarming initiation and biofilm reduction. Our findings reveal a novel cellular system that senses iron levels to regulate bacterial surface lifestyle.


Asunto(s)
Proteínas Bacterianas/fisiología , Biopelículas , Hierro/metabolismo , Serratia marcescens/fisiología , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cumarinas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Flagelos/fisiología , Regulación Bacteriana de la Expresión Génica , Modelos Biológicos , Serratia marcescens/genética , Serratia marcescens/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
10.
Nat Commun ; 6: 7489, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26102296

RESUMEN

Obesity is associated with low-grade chronic inflammation and intestinal dysbiosis. Ganoderma lucidum is a medicinal mushroom used in traditional Chinese medicine with putative anti-diabetic effects. Here, we show that a water extract of Ganoderma lucidum mycelium (WEGL) reduces body weight, inflammation and insulin resistance in mice fed a high-fat diet (HFD). Our data indicate that WEGL not only reverses HFD-induced gut dysbiosis-as indicated by the decreased Firmicutes-to-Bacteroidetes ratios and endotoxin-bearing Proteobacteria levels-but also maintains intestinal barrier integrity and reduces metabolic endotoxemia. The anti-obesity and microbiota-modulating effects are transmissible via horizontal faeces transfer from WEGL-treated mice to HFD-fed mice. We further show that high molecular weight polysaccharides (>300 kDa) isolated from the WEGL extract produce similar anti-obesity and microbiota-modulating effects. Our results indicate that G. lucidum and its high molecular weight polysaccharides may be used as prebiotic agents to prevent gut dysbiosis and obesity-related metabolic disorders in obese individuals.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Polisacáridos Fúngicos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Resistencia a la Insulina , Obesidad/microbiología , Reishi , Animales , Bacteroides/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa , Disbiosis/metabolismo , Disbiosis/microbiología , Endotoxemia , Trasplante de Microbiota Fecal , Firmicutes/efectos de los fármacos , Inflamación/metabolismo , Inflamación/microbiología , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Ratones , Obesidad/metabolismo , Permeabilidad/efectos de los fármacos , Extractos Vegetales/farmacología , Proteobacteria/efectos de los fármacos
11.
Infect Immun ; 83(2): 682-92, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25422269

RESUMEN

Glycerophosphodiester phosphodiesterase (GlpQ) metabolizes glycerophosphorylcholine from the lung epithelium to produce free choline, which is transformed into phosphorylcholine and presented on the surfaces of many respiratory pathogens. Two orthologs of glpQ genes are found in Streptococcus pneumoniae: glpQ, with a membrane motif, is widespread in pneumococci, whereas glpQ2, which shares high similarity with glpQ in Haemophilus influenzae and Mycoplasma pneumoniae, is present only in S. pneumoniae serotype 3, 6B, 19A, and 19F strains. Recently, serotype 19A has emerged as an epidemiological etiology associated with invasive pneumococcal diseases. Thus, we investigated the pathophysiological role of glpQ2 in a serotype 19A sequence type 320 (19AST320) strain, which was the prevalent sequence type in 19A associated with severe pneumonia and invasive pneumococcal disease in pediatric patients. Mutations in glpQ2 reduced phosphorylcholine expression and the anchorage of choline-binding proteins to the pneumococcal surface during the exponential phase, where the mutants exhibited reduced autolysis and lower natural transformation abilities than the parent strain. The deletion of glpQ2 also decreased the adherence and cytotoxicity to human lung epithelial cell lines, whereas these functions were indistinguishable from those of the wild type in complementation strains. In a murine respiratory tract infection model, glpQ2 was important for nasopharynx and lung colonization. Furthermore, infection with a glpQ2 mutant decreased the severity of pneumonia compared with the parent strain, and glpQ2 gene complementation restored the inflammation level. Therefore, glpQ2 enhances surface phosphorylcholine expression in S. pneumoniae 19AST320 during the exponential phase, which contributes to the severity of pneumonia by promoting adherence and host cell cytotoxicity.


Asunto(s)
Adhesión Bacteriana/genética , Proteínas Bacterianas/genética , Hidrolasas Diéster Fosfóricas/genética , Infecciones Neumocócicas/inmunología , Infecciones del Sistema Respiratorio/inmunología , Streptococcus pneumoniae/patogenicidad , Secuencia de Aminoácidos , Animales , Autólisis/genética , Línea Celular , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Expresión Génica/genética , Humanos , Pulmón/citología , Ratones , Ratones Endogámicos BALB C , Fosforilcolina/metabolismo , Infecciones Neumocócicas/microbiología , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/patología , Alineación de Secuencia , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/inmunología
12.
Nat Commun ; 5: 5312, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25387524

RESUMEN

In yeast, the initiation of telomere replication at the late S phase involves in combined actions of kinases on Cdc13, the telomere binding protein. Cdc13 recruits telomerase to telomeres through its interaction with Est1, a component of telomerase. However, how cells terminate the function of telomerase at G2/M is still elusive. Here we show that the protein phosphatase 2A (PP2A) subunit Pph22 and the yeast Aurora kinase homologue Ipl1 coordinately inhibit telomerase at G2/M by dephosphorylating and phosphorylating the telomerase recruitment domain of Cdc13, respectively. While Pph22 removes Tel1/Mec1-mediated Cdc13 phosphorylation to reduce Cdc13-Est1 interaction, Ipl1-dependent Cdc13 phosphorylation elicits dissociation of Est1-TLC1, the template RNA component of telomerase. Failure of these regulations prevents telomerase from departing telomeres, causing perturbed telomere lengthening and prolonged M phase. Together our results demonstrate that differential and additive actions of PP2A and Aurora on Cdc13 limit telomerase action by removing active telomerase from telomeres at G2/M phase.


Asunto(s)
Aurora Quinasas/fisiología , División Celular/fisiología , Fase G2/fisiología , Proteína Fosfatasa 2/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Telomerasa/fisiología , Proteínas de Unión a Telómeros/fisiología , Telómero/fisiología , Aurora Quinasas/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo
13.
Mol Cell Proteomics ; 13(2): 594-605, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24319056

RESUMEN

Degradation of the M phase cyclins triggers the exit from M phase. Cdc14 is the major phosphatase required for the exit from the M phase. One of the functions of Cdc14 is to dephosphorylate and activate the Cdh1/APC/C complex, resulting in the degradation of the M phase cyclins. However, other crucial targets of Cdc14 for mitosis and cytokinesis remain to be elucidated. Here we systematically analyzed the positions of dephosphorylation sites for Cdc14 in the budding yeast Saccharomyces cerevisiae. Quantitative mass spectrometry identified a total of 835 dephosphorylation sites on 455 potential Cdc14 substrates in vivo. We validated two events, and through functional studies we discovered that Cdc14-mediated dephosphorylation of Smc4 and Bud3 is essential for proper mitosis and cytokinesis, respectively. These results provide insight into the Cdc14-mediated pathways for exiting the M phase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Citocinesis , Mitosis , Fosfoproteínas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Citocinesis/genética , Empaquetamiento del ADN , Mitosis/genética , Fosfoproteínas/química , Fosforilación , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Espectrometría de Masas en Tándem
14.
Stem Cells ; 28(9): 1510-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20629177

RESUMEN

The zinc finger Krüppel-like transcription factor 4 (KLF4) has been implicated in cancer formation and stem cell regulation. However, the function of KLF4 in tumorigenesis and stem cell regulation are poorly understood due to limited knowledge of its targets in these cells. In this study, we have revealed a surprising link between KLF4 and regulation of telomerase that offers important insight into how KLF4 contributes to cancer formation and stem cell regulation. KLF4 sufficiently activated expression of the human telomerase catalytic subunit, human telomerase reverse transcriptase (hTERT), in telomerase-low alternative lengthening of telomeres (ALT), and fibroblast cells, while downregulation of KLF4 reduced its expression in cancerous and stem cells, which normally exhibits high expression. Furthermore, KLF4-dependent induction of hTERT was mediated by a KLF4 binding site in the proximal promoter region of hTERT. In human embryonic stem cells, expression of hTERT replaced KLF4 function to maintain their self-renewal. Therefore, our findings demonstrate that hTERT is one of the major targets of KLF4 in cancer and stem cells to maintain long-term proliferation potential.


Asunto(s)
Carcinoma de Células Escamosas/enzimología , Células Madre Embrionarias/enzimología , Factores de Transcripción de Tipo Kruppel/metabolismo , Telomerasa/metabolismo , Animales , Sitios de Unión , Carcinoma de Células Escamosas/patología , Línea Celular , Proliferación Celular , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Regiones Promotoras Genéticas , Interferencia de ARN , Telomerasa/genética , Activación Transcripcional , Transfección , Técnicas del Sistema de Dos Híbridos
15.
Biochem Biophys Res Commun ; 393(2): 297-302, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20138832

RESUMEN

The small subunit (SSU) processome is an evolutionarily conserved ribonucleoprotein (RNP) complex that consists of U3 snoRNA and at least 40 protein components. The SSU processome is required for the generation of 18S rRNA in the budding yeast Saccharomyces cerevisiae. In this study we demonstrate that two essential components of the SSU processome, Utp8p and Utp9p, must interact directly for the SSU processome to function properly. Disruption of the Utp8p-Utp9p interaction by mutation of the respective interacting domain led to a compromised ability of yeast cells to process 35S pre-rRNA into 18S pre-rRNA. Loss of the Utp8p-Utp9p interaction also led to a decrease in the amount of Utp8p that interacted with U3 small nucleolar RNAs (snoRNAs) but did not affect the amount of Utp9p bound to U3 snoRNA, suggesting that Utp8p associates with the SSU processome by virtue of its interaction with Utp9p. Together, our data support a model where Utp8p and Utp9p must interact directly and functionally in the U3-containing SSU processome for optimal rRNA biosynthesis to occur in budding yeast.


Asunto(s)
Proteínas Nucleares/metabolismo , ARN Ribosómico/biosíntesis , ARN Nucleolar Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Nucleares/genética , Precursores del ARN/biosíntesis , ARN Ribosómico 18S/biosíntesis , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Nucleic Acids Res ; 37(11): 3602-11, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19359360

RESUMEN

Budding yeast telomerase is mainly activated by Tel1/Mec1 (yeast ATM/ATR) on Cdc13 from late S to G2 phase of the cell cycle. Here, we demonstrated that the telomerase-recruitment domain of Cdc13 is also phosphorylated by Cdk1 at the same cell cycle stage as the Tel1/Mec1-dependent regulation. Phosphor-specific gel analysis demonstrated that Cdk1 phosphorylates residues 308 and 336 of Cdc13. The residue T308 of Cdc13 is critical for efficient Mec1-mediated S306 phosphorylation in vitro. Phenotypic analysis in vivo revealed that the mutations in the Cdc13 S/TP motifs phosphorylated by Cdk1 caused cell cycle delay and telomere shortening and these phenotypes could be partially restored by the replacement with a negative charge residue. In the absence of Ku or Tel1, Cdk1-mediated phosphorylation of Cdc13 showed no effect on telomere length maintenance. Moreover, this Cdk1-mediated phosphorylation was required to promote the regular turnover of Cdc13. Together these results demonstrate that Cdk1 phosphorylates the telomerase recruitment domain of Cdc13, thereby preserves optimal function and expression level of Cdc13 for precise telomere replication and cell cycle progression.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Homeostasis , Mutación , Fosforilación , Estabilidad Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Telómero/química , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética
17.
PLoS Genet ; 4(4): e1000060, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18437220

RESUMEN

Genotoxic agents that cause double-strand breaks (DSBs) often generate damage at the break termini. Processing enzymes, including nucleases and polymerases, must remove damaged bases and/or add new bases before completion of repair. Artemis is a nuclease involved in mammalian nonhomologous end joining (NHEJ), but in Saccharomyces cerevisiae the nucleases and polymerases involved in NHEJ pathways are poorly understood. Only Pol4 has been shown to fill the gap that may form by imprecise pairing of overhanging 3' DNA ends. We previously developed a chromosomal DSB assay in yeast to study factors involved in NHEJ. Here, we use this system to examine DNA polymerases required for NHEJ in yeast. We demonstrate that Pol2 is another major DNA polymerase involved in imprecise end joining. Pol1 modulates both imprecise end joining and more complex chromosomal rearrangements, and Pol3 is primarily involved in NHEJ-mediated chromosomal rearrangements. While Pol4 is the major polymerase to fill the gap that may form by imprecise pairing of overhanging 3' DNA ends, Pol2 is important for the recession of 3' flaps that can form during imprecise pairing. Indeed, a mutation in the 3'-5' exonuclease domain of Pol2 dramatically reduces the frequency of end joins formed with initial 3' flaps. Thus, Pol2 performs a key 3' end-processing step in NHEJ.


Asunto(s)
ADN Polimerasa II/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos/genética , Roturas del ADN de Doble Cadena , ADN Polimerasa II/genética , ADN Polimerasa beta , Reparación del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Genes Fúngicos , Mutación , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Nucleic Acids Res ; 34(21): 6327-36, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17108359

RESUMEN

The DNA damage-responsive protein kinases ATM and ATR phosphorylate SQ/TQ motifs that lie in clusters in most of their in vivo targets. Budding yeast Cdc13p contains two clusters of SQ/TQ motifs, suggesting that it might be a target of Mec1p/Tel1p (yeast ATR/ATM). Here we demonstrated that the telomerase recruitment domain of Cdc13p is phosphorylated by Mec1p and Tel1p. Gel analysis showed that Cdc13p contains a Mec1/Tel1-dependent post-translational modification. Using an immunoprecipitate (IP)-kinase assay, we showed that Mec1p phosphorylates Cdc13p on serine 225, 249, 255 and 306, and Tel1p phosphorylates Cdc13p on serine 225, 249 and 255 in vitro. Phenotypic analysis in vivo revealed that the mutations in the Cdc13p SQ motifs phosphorylated by Mec1p and Tel1p caused multiple telomere and growth defects. In addition, normal telomere length and growth could be restored by expressing a Cdc13-Est1p hybrid protein. These results demonstrate the telomerase recruitment domain of Cdc13p as an important new telomere-specific target of Mec1p/Tel1p.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/metabolismo , ADN Polimerasa I/metabolismo , Inmunoprecipitación , Mutación , Fenotipo , Fosforilación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Telómero/química , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética
19.
J Mol Histol ; 37(5-7): 293-9, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16752129

RESUMEN

During the past 20 years, the MRE11-RAD50-NBS1 complex has become an increasingly important focus in basic and clinical cancer research. One main conceptual step forward was made with the discovery of NBS1 and the understanding of its critical pathophysiological role in Nijmegen breakage syndrome. Major efforts were carried out to define the role in DNA repair of this complex. Recently, basic research has continuously extended our understanding of the complexity of the NBS1 complex. MRE11-RAD50-NBS1 complex can no longer be viewed as having a single role in DNA damage repair since it also serves as a sensor and a mediator in cell cycle checkpoint signaling. Meanwhile, studies have challenged the concept that NBS1 only functions as a tumor suppressor in preserving genome integrity in the nucleus. It may also provide an oncogenic role in the cytoplasm which is associated with the PI3-kinase/AKT-activation pathway. Consistent with this aspect, a growing body of clinical evidence suggests that NBS1 contains a deleterious character that depends on its subcellular localization. This review focuses on recent experimental evidences demonstrating how NBS1 is translocated into the nucleus by an importin KPNA2 which mediates NBS1 subcellular localization and the functions of the NBS1 complex in tumorigenesis.


Asunto(s)
Proteínas de Ciclo Celular/genética , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Síndrome de Nijmegen/genética , Proteínas Nucleares/genética , alfa Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Proteínas de Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Modelos Biológicos , Neoplasias/etiología , Neoplasias/metabolismo , Proteínas Nucleares/fisiología , Transducción de Señal , alfa Carioferinas/genética , alfa Carioferinas/fisiología
20.
Biochem Biophys Res Commun ; 343(2): 459-66, 2006 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-16546132

RESUMEN

Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In yeast cells that lack telomerase, telomeres are maintained by alternative type I and type II recombination mechanisms. Previous studies identified several proteins to control the choice between two types of recombinations. Here, we demonstrate that configuration of telomeres also plays a role to determine the fate of telomere replication in progeny. When diploid yeasts from mating equip with a specific type of telomeric structure in their genomes, they prefer to maintain this type of telomere replication in their descendants. While inherited telomere structure is easier to be utilized in progeny at the beginning stage, the telomeres in type I diploids can gradually switch to the type II cells in liquid culture. Importantly, the TLC1/tlc1 yeast cells develop type II survivors suggesting that haploid insufficiency of telomerase RNA component, which is similar to a type of dyskeratosis congenital in human. Altogether, our results suggest that both protein factors and substrate availability contribute to the choice among telomere replication pathways in yeast.


Asunto(s)
Replicación del ADN/genética , Recombinación Genética/genética , Saccharomycetales/genética , Transducción de Señal/genética , Telómero/genética , Secuencia de Bases , Datos de Secuencia Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...