Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Transplant ; 26(3): 513-527, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-27938475

RESUMEN

Fabry disease (FD) is an X-linked inherited lysosomal storage disease caused by α-galactosidase A (GLA) deficiency. Progressive intracellular accumulation of globotriaosylceramide (Gb3) is considered to be pathogenically responsible for the phenotype variability of FD that causes cardiovascular dysfunction; however, molecular mechanisms underlying the impairment of FD-associated cardiovascular tissues remain unclear. In this study, we reprogrammed human induced pluripotent stem cells (hiPSCs) from peripheral blood cells of patients with FD (FD-iPSCs); subsequently differentiated them into vascular endothelial-like cells (FD-ECs) expressing CD31, VE-cadherin, and vWF; and investigated their ability to form vascular tube-like structures. FD-ECs recapitulated the FD pathophysiological phenotype exhibiting intracellular Gb3 accumulation under a transmission electron microscope. Moreover, compared with healthy control iPSC-derived endothelial cells (NC-ECs), reactive oxygen species (ROS) production considerably increased in FD-ECs. Microarray analysis was performed to explore the possible mechanism underlying Gb3 accumulation-induced ROS production in FD-ECs. Our results revealed that superoxide dismutase 2 (SOD2), a mitochondrial antioxidant, was significantly downregulated in FD-ECs. Compared with NC-ECs, AMPK activity was significantly enhanced in FD-ECs. Furthermore, to investigate the role of Gb3 in these effects, human umbilical vein endothelial cells (HUVECs) were treated with Gb3. After Gb3 treatment, we observed that SOD2 expression was suppressed and AMPK activity was enhanced in a dose-dependent manner. Collectively, our results indicate that excess accumulation of Gb3 suppressed SOD2 expression, increased ROS production, enhanced AMPK activation, and finally caused vascular endothelial dysfunction. Our findings suggest that dysregulated mitochondrial ROS may be a potential target for treating FD.


Asunto(s)
Antioxidantes/metabolismo , Células Endoteliales/metabolismo , Enfermedad de Fabry/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas , Células Endoteliales/patología , Humanos , Superóxido Dismutasa/metabolismo
2.
Int J Mol Sci ; 17(12)2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27983599

RESUMEN

The CRISPR/Cas9 Genome-editing system has revealed promising potential for generating gene mutation, deletion, and correction in human cells. Application of this powerful tool in Fabry disease (FD), however, still needs to be explored. Enzyme replacement therapy (ERT), a regular administration of recombinant human α Gal A (rhα-GLA), is a currently available and effective treatment to clear the accumulated Gb3 in FD patients. However, the short half-life of rhα-GLA in human body limits its application. Moreover, lack of an appropriate in vitro disease model restricted the high-throughput screening of drugs for improving ERT efficacy. Therefore, it is worth establishing a large-expanded in vitro FD model for screening potential candidates, which can enhance and prolong ERT potency. Using CRISPR/Cas9-mediated gene knockout of GLA in HEK-293T cells, we generated GLA-null cells to investigate rhα-GLA cellular pharmacokinetics. The half-life of administrated rhα-GLA was around 24 h in GLA-null cells; co-administration of proteasome inhibitor MG132 and rhα-GLA significantly restored the GLA enzyme activity by two-fold compared with rhα-GLA alone. Furthermore, co-treatment of rhα-GLA/MG132 in patient-derived fibroblasts increased Gb3 clearance by 30%, compared with rhα-GLA treatment alone. Collectively, the CRISPR/Cas9-mediated GLA-knockout HEK-293T cells provide an in vitro FD model for evaluating the intracellular pharmacokinetics of the rhα-GLA as well as for screening candidates to prolong rhα-GLA potency. Using this model, we demonstrated that MG132 prolongs rhα-GLA half-life and enhanced Gb3 clearance, shedding light on the direction of enhancing ERT efficacy in FD treatment.


Asunto(s)
Sistemas CRISPR-Cas/genética , Evaluación Preclínica de Medicamentos , Enfermedad de Fabry/tratamiento farmacológico , Técnicas de Inactivación de Genes , alfa-Galactosidasa/metabolismo , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Secuencia de Bases , Muerte Celular/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Fibroblastos/metabolismo , Edición Génica , Marcación de Gen , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Leupeptinas/administración & dosificación , Leupeptinas/farmacología , Modelos Biológicos , Proteínas Recombinantes/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
3.
Oncotarget ; 7(40): 64631-64648, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27564261

RESUMEN

Advanced age-related macular degeneration (AMD) may lead to geographic atrophy or fibrovascular scar at macular, dysfunctional retinal microenvironment, and cause profound visual loss. Recent clinical trials have implied the potential application of pluripotent cell-differentiated retinal pigment epithelial cells (dRPEs) and membranous scaffolds implantation in repairing the degenerated retina in AMD. However, the efficacy of implanted membrane in immobilization and supporting the viability and functions of dRPEs, as well as maintaining the retinal microenvironment is still unclear. Herein we generated a biomimetic scaffold mimicking subretinal Bruch's basement from plasma modified polydimethylsiloxane (PDMS) sheet with laminin coating (PDMS-PmL), and investigated its potential functions to provide a subretinal environment for dRPE-monolayer grown on it. Firstly, compared to non-modified PDMS, PDMS-PmL enhanced the attachment, proliferation, polarization, and maturation of dRPEs. Second, PDMS-PmL increased the polarized tight junction, PEDF secretion, melanosome pigment deposit, and phagocytotic-ability of dRPEs. Third, PDMS-PmL was able to carry a dRPEs/photoreceptor-precursors multilayer retina tissue. Finally, the in vivo subretinal implantation of PDMS-PmL in porcine eyes showed well-biocompatibility up to 2-year follow-up. Notably, multifocal ERGs at 2-year follow-up revealed well preservation of macular function in PDMS-PmL, but not PDMS, transplanted porcine eyes. Trophic PEDF secretion of macular retina in PDMS-PmL group was also maintained to preserve retinal microenvironment in PDMS-PmL eyes at 2 year. Taken together, these data indicated that PDMS-PmL is able to sustain the physiological morphology and functions of polarized RPE monolayer, suggesting its potential of rescuing macular degeneration in vivo.


Asunto(s)
Materiales Biomiméticos/química , Dimetilpolisiloxanos/química , Laminina/química , Degeneración Macular/cirugía , Nylons/química , Células Madre Pluripotentes/trasplante , Epitelio Pigmentado de la Retina/trasplante , Trasplante de Células Madre , Andamios del Tejido/química , Animales , Lámina Basal de la Coroides/metabolismo , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Microambiente Celular , Regeneración Tisular Dirigida , Melanosomas/metabolismo , Células Madre Pluripotentes/patología , Epitelio Pigmentado de la Retina/patología , Porcinos
4.
Sci Rep ; 6: 23661, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27025901

RESUMEN

Myoclonus epilepsy associated with ragged-red fibers (MERRF) is a mitochondrial disorder characterized by myoclonus epilepsy, generalized seizures, ataxia and myopathy. MERRF syndrome is primarily due to an A to G mutation at mtDNA 8344 that disrupts the mitochondrial gene for tRNA(Lys). However, the detailed mechanism by which this tRNA(Lys) mutation causes mitochondrial dysfunction in cardiomyocytes or neurons remains unclear. In this study, we generated human induced pluripotent stem cells (hiPSCs) that carry the A8344G genetic mutation from patients with MERRF syndrome. Compared with mutation-free isogenic hiPSCs, MERRF-specific hiPSCs (MERRF-hiPSCs) exhibited reduced oxygen consumption, elevated reactive oxygen species (ROS) production, reduced growth, and fragmented mitochondrial morphology. We sought to investigate the induction ability and mitochondrial function of cardiomyocyte-like cells differentiated from MERRF-hiPSCs. Our data demonstrate that that cardiomyocyte-like cells (MERRF-CMs) or neural progenitor cells (MERRF-NPCs) differentiated from MERRF-iPSCs also exhibited increased ROS levels and altered antioxidant gene expression. Furthermore, MERRF-CMs or -NPCs contained fragmented mitochondria, as evidenced by MitoTracker Red staining and transmission electron microscopy. Taken together, these findings showed that MERRF-hiPSCs and MERRF-CM or -NPC harboring the A8344G genetic mutation displayed contained mitochondria with an abnormal ultrastructure, produced increased ROS levels, and expressed upregulated antioxidant genes.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Síndrome MERRF/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adolescente , Desdiferenciación Celular , Diferenciación Celular , Células Cultivadas , ADN Mitocondrial/genética , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Síndrome MERRF/patología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Forma de los Orgánulos , Consumo de Oxígeno , Mutación Puntual
5.
Int J Mol Sci ; 16(7): 15531-45, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26184161

RESUMEN

Poly(ADP-ribos)ylation (PARylation) is the catalytic function of the Poly(ADP-ribose) polymerases (Parps) family for post-translational modification in cellular process. Being a major member of Parps, Parp1 is a crucial nuclear factor with biological significance in modulating DNA repair, DNA replication, transcription, DNA methylation and chromatin remodeling through PARylation of downstream proteins. In addition, high expression level and activity of Parp1 are correlated with pluripotent status, reprogramming, and cancer. Furthermore, epigenetic modulation of Parp1 is explored for regulating wide variety of gene expression. Genetic and pharmaceutical disruption of Parp1 further confirmed the importance of Parp1 in cell growth, DNA repair, and reprogramming efficiency. Taken together, the proximity toward the understanding of the modulation of Parp1 including interaction and modification in different fields will provide new insight for future studies. In this review, the biological significance of Parp1 in transcription and the epigenetic modulation of Parp1 in pluripotent status, reprogramming process and cancer will be summarized.


Asunto(s)
Poli(ADP-Ribosa) Polimerasas/metabolismo , Carcinogénesis , Reprogramación Celular , Ensamble y Desensamble de Cromatina , Metilación de ADN , Reparación del ADN , Humanos , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética
6.
Cell Biol Int ; 38(11): 1252-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24889971

RESUMEN

Iron uptake by the transferrin (Tf)-transferrin receptor (TfR) complex is critical for erythroid differentiation. The mechanisms of TfR trafficking have been examined, but the adaptor proteins involved in this process are not fully elucidated. We have investigated the role of the adaptor protein, Disabled-2 (Dab2), in erythroid differentiation and Tf uptake in the cells of hematopoietic lineage. Dab2 was upregulated in a time-dependent manner during erythroid differentiation of mouse embryonic stem cells and human K562 erythroleukemic cells. Attenuating Dab2 expression in K562 cells diminished TfR internalization and increased surface levels of TfR concomitantly with a decrease in Tf uptake and erythroid differentiation. Dab2 regulated Tf uptake of the suspended, but not adherent, cultures of K562 cells. In contrast, Dab2 is not involved in TfR trafficking in the HeLa cells with epithelial origin. These differential effects are Dab2-specific because attenuating the expression of adaptor protein 2 µ subunit inhibited the uptake of Tf regardless of culture condition. We offer novel insight of Dab2 function in iron uptake and TfR internalization for the suspended culture of hematopoietic lineage cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transferrina/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Reguladoras de la Apoptosis , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Madre Embrionarias/citología , Eritrocitos/citología , Células HeLa , Humanos , Hidroxiurea/farmacología , Células K562 , Ratones , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores de Transferrina/metabolismo , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba
7.
FEBS Lett ; 588(1): 58-64, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24239537

RESUMEN

Reelin is an extracellular glycoprotein that is highly conserved in mammals. In addition to its expression in the nervous system, Reelin is present in erythroid cells but its function there is unknown. We report in this study that Reelin is up-regulated during erythroid differentiation of human erythroleukemic K562 cells and is expressed in the erythroid progenitors of murine bone marrow. Reelin deficiency promotes erythroid differentiation of K562 cells and augments erythroid production in murine bone marrow. In accordance with these findings, Reelin deficiency attenuates AKT phosphorylation of the Ter119(+)CD71(+) erythroid progenitors and alters the cell number and frequency of the progenitors at different erythroid differentiation stages. A regulatory role of Reelin in erythroid differentiation is thus defined.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular , Células Eritroides/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Western Blotting , Células de la Médula Ósea/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Linaje de la Célula/genética , Células Precursoras Eritroides/metabolismo , Proteínas de la Matriz Extracelular/genética , Regulación Leucémica de la Expresión Génica , Homocigoto , Humanos , Células K562 , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Ratones , Ratones Mutantes Neurológicos , Proteínas del Tejido Nervioso/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Proteína Reelina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina Endopeptidasas/genética , Regulación hacia Arriba
8.
J Biol Chem ; 287(13): 10316-10324, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22270364

RESUMEN

Integrin signaling and membrane blebbing modulate cell adhesion, spreading, and migration. However, the relationship between integrin signaling and membrane blebbing is unclear. Here, we show that an integrin-ligand interaction induces both membrane blebbing and changes in membrane permeability. Sodium-proton exchanger 1 (NHE1) and sodium-calcium exchanger 1 (NCX1) are membrane proteins located on the bleb membrane. Inhibition of NHE1 disrupts membrane blebbing and decreases changes in membrane permeability. However, inhibition of NCX1 enhances cell blebbing; cells become swollen because of NHE1 induced intracellular sodium accumulation. Our study found that NHE1 induced sodium influx is a driving force for membrane bleb growth, while sodium efflux (and calcium influx) induced by NCX1 in a reverse mode results in membrane bleb retraction. Together, these findings reveal a novel function for NHE1 and NCX1 in membrane blebbing and permeability, and establish a link between membrane blebbing and integrin signaling.


Asunto(s)
Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Estructuras de la Membrana Celular/metabolismo , Integrinas/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Animales , Células CHO , Proteínas de Transporte de Catión/genética , Permeabilidad de la Membrana Celular/fisiología , Estructuras de la Membrana Celular/genética , Cricetinae , Cricetulus , Humanos , Integrinas/genética , Transporte Iónico/fisiología , Transducción de Señal/fisiología , Intercambiador de Sodio-Calcio/genética , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/genética
9.
Cell Mol Life Sci ; 67(4): 641-53, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19936619

RESUMEN

Abnormalities of platelet functions have been linked to reelin-impaired neuronal disorders. However, little attention has been given to understanding the interplay between reelin and platelet. In this study, reelin was found to present in the human platelets and megakaryocyte-like leukemic cells. Reelin-binding assays revealed that extracellular reelin can interact with platelets through the receptor belonging to the low density lipoprotein receptor gene family. The reelin-to-platelet interactions enhance platelet spreading on fibrinogen concomitant with the augmentation of lamellipodia formation and F-actin bundling. In contrast, reelin has no effect on integrin alphaIIbbeta3 activation and agonist-induced platelet aggregation. Molecular analysis revealed that the up-regulation of Rac1 activity and the inhibition of protein kinase C delta-Thr505 phosphorylation are important for reelin-mediated enhancement of platelet spreading on fibrinogen. These findings demonstrate for the first time that reelin is present in platelets and the reelin-to-platelet interactions play a novel role in platelet signaling and functions.


Asunto(s)
Plaquetas/fisiología , Moléculas de Adhesión Celular Neuronal/fisiología , Movimiento Celular , Proteínas de la Matriz Extracelular/fisiología , Proteínas del Tejido Nervioso/fisiología , Agregación Plaquetaria , Serina Endopeptidasas/fisiología , Plaquetas/metabolismo , Moléculas de Adhesión Celular Neuronal/sangre , Línea Celular Tumoral , Proteínas de la Matriz Extracelular/sangre , Fibrinógeno/metabolismo , Humanos , Proteínas del Tejido Nervioso/sangre , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/agonistas , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Proteína Reelina , Serina Endopeptidasas/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...