Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(33): 43374-43386, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39113638

RESUMEN

Orthopedic implant-related bacterial infections and resultant antibiotic-resistant biofilms hinder implant-tissue integration and failure. Biofilm quorum sensing (QS) communication determines the pathogen colonization success. However, it remains unclear how implant modifications and host cells are influenced by, or influence, QS. High aspect ratio nanotopographies have shown to reduce biofilm formation of Pseudomonas aeruginosa, a sepsis causing pathogen with well-defined QS molecules. Producing such nanotopographies in relevant orthopedic materials (i.e., titanium) allows for probing QS using mass spectrometry-based metabolomics. However, nanotopographies can reduce host cell adhesion and regeneration. Therefore, we developed a polymer (poly(ethyl acrylate), PEA) coating that organizes extracellular matrix proteins, promoting bioactivity to host cells such as human mesenchymal stromal cells (hMSCs), maintaining biofilm reduction. This allowed us to investigate how hMSCs, after winning the race for the surface against pathogenic cells, interact with the biofilm. Our approach revealed that nanotopographies reduced major virulence pathways, such as LasR. The enhanced hMSCs support provided by the coated nanotopographies was shown to suppress virulence pathways and biofilm formation. Finally, we selected bioactive metabolites and demonstrated that these could be used as adjuncts to the nanostructured surfaces to reduce biofilm formation and enhance hMSC activity. These surfaces make excellent models to study hMSC-pathogen interactions and could be envisaged for use in novel orthopedic implants.


Asunto(s)
Biopelículas , Técnicas de Cocultivo , Células Madre Mesenquimatosas , Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Percepción de Quorum/efectos de los fármacos , Humanos , Biopelículas/efectos de los fármacos , Interacciones Huésped-Patógeno , Nanoestructuras/química
2.
Nat Commun ; 15(1): 5791, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987295

RESUMEN

Long-term reconstituting haematopoietic stem cells (LT-HSCs) are used to treat blood disorders via stem cell transplantation. The very low abundance of LT-HSCs and their rapid differentiation during in vitro culture hinders their clinical utility. Previous developments using stromal feeder layers, defined media cocktails, and bioengineering have enabled HSC expansion in culture, but of mostly short-term HSCs and progenitor populations at the expense of naive LT-HSCs. Here, we report the creation of a bioengineered LT-HSC maintenance niche that recreates physiological extracellular matrix organisation, using soft collagen type-I hydrogels to drive nestin expression in perivascular stromal cells (PerSCs). We demonstrate that nestin, which is expressed by HSC-supportive bone marrow stromal cells, is cytoprotective and, via regulation of metabolism, is important for HIF-1α expression in PerSCs. When CD34+ve HSCs were added to the bioengineered niches comprising nestin/HIF-1α expressing PerSCs, LT-HSC numbers were maintained with normal clonal and in vivo reconstitution potential, without media supplementation. We provide proof-of-concept that our bioengineered niches can support the survival of CRISPR edited HSCs. Successful editing of LT-HSCs ex vivo can have potential impact on the treatment of blood disorders.


Asunto(s)
Matriz Extracelular , Células Madre Hematopoyéticas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Nestina , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Animales , Nestina/metabolismo , Nestina/genética , Matriz Extracelular/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Nicho de Células Madre , Hidrogeles/química , Bioingeniería/métodos , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Trasplante de Células Madre Hematopoyéticas , Antígenos CD34/metabolismo , Colágeno Tipo I/metabolismo , Diferenciación Celular , Ratones Endogámicos C57BL
3.
ACS Appl Mater Interfaces ; 16(26): 32930-32944, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888932

RESUMEN

Protein materials are versatile tools in diverse biomedical fields. Among them, artificial secretory granules (SGs), mimicking those from the endocrine system, act as mechanically stable reservoirs for the sustained release of proteins as oligomeric functional nanoparticles. Only validated in oncology, the physicochemical properties of SGs, along with their combined drug-releasing and scaffolding abilities, make them suitable as smart topographies in regenerative medicine for the prolonged delivery of growth factors (GFs). Thus, considering the need for novel, safe, and cost-effective materials to present GFs, in this study, we aimed to biofabricate a protein platform combining both endocrine-like and extracellular matrix fibronectin-derived (ECM-FN) systems. This approach is based on the sustained delivery of a nanostructured histidine-tagged version of human fibroblast growth factor 2. The GF is presented onto polymeric surfaces, interacting with FN to spontaneously generate nanonetworks that absorb and present the GF in the solid state, to modulate mesenchymal stromal cell (MSC) behavior. The results show that SGs-based topographies trigger high rates of MSCs proliferation while preventing differentiation. While this could be useful in cell therapy manufacture demanding large numbers of unspecialized MSCs, it fully validates the hybrid platform as a convenient setup for the design of biologically active hybrid surfaces and in tissue engineering for the controlled manipulation of mammalian cell growth.


Asunto(s)
Matriz Extracelular , Fibronectinas , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibronectinas/química , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/farmacología , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Nanoestructuras/química
4.
Biomater Adv ; 158: 213766, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38232578

RESUMEN

Medical implant-associated infections pose a significant challenge to modern medicine, with aseptic loosening and bacterial infiltration being the primary causes of implant failure. While nanostructured surfaces have demonstrated promising antibacterial properties, the translation of their efficacy from 2D to 3D substrates remains a challenge. Here, we used scalable alkaline etching to fabricate nanospike and nanonetwork topologies on 2D and laser powder-bed fusion printed 3D titanium. The fabricated surfaces were compared with regard to their antibacterial properties against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and mesenchymal stromal cell responses with and without the presence of bacteria. Finite elemental analysis assessed the mechanical properties and permeability of the 3D substrate. Our findings suggest that 3D nanostructured surfaces have potential to both prevent implant infections and allow host cell integration. This work represents a significant step towards developing effective and scalable fabrication methods on 3D substrates with consistent and reproducible antibacterial activity, with important implications for the future of medical implant technology.


Asunto(s)
Adhesión Bacteriana , Titanio , Titanio/farmacología , Técnicas de Cocultivo , Propiedades de Superficie , Antibacterianos/farmacología , Antibacterianos/química , Bacterias
5.
Sci Rep ; 9(1): 12944, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506561

RESUMEN

In regenerative medicine, techniques which control stem cell lineage commitment are a rapidly expanding field of interest. Recently, nanoscale mechanical stimulation of mesenchymal stem cells (MSCs) has been shown to activate mechanotransduction pathways stimulating osteogenesis in 2D and 3D culture. This has the potential to revolutionise bone graft procedures by creating cellular graft material from autologous or allogeneic sources of MSCs without using chemical induction. With the increased interest in mechanical stimulation of cells and huge potential for clinical use, it is apparent that researchers and clinicians require a scalable bioreactor system that provides consistently reproducible results with a simple turnkey approach. A novel bioreactor system is presented that consists of: a bioreactor vibration plate, calibrated and optimised for nanometre vibrations at 1 kHz, a power supply unit, which supplies a 1 kHz sine wave signal necessary to generate approximately 30 nm of vibration amplitude, and custom 6-well cultureware with toroidal shaped magnets incorporated in the base of each well for conformal attachment to the bioreactor's magnetic vibration plate. The cultureware and vibration plate were designed using finite element analysis to determine the modal and harmonic responses, and validated by interferometric measurement. This helps ensure that the vibration plate and cultureware, and thus collagen and MSCs, all move as a rigid body, avoiding large deformations close to the resonant frequency of the vibration plate and vibration damping beyond the resonance. Assessment of osteogenic protein expression was performed to confirm differentiation of MSCs after initial biological experiments with the system, as well as atomic force microscopy of the 3D gel constructs during vibrational stimulation to verify that strain hardening of the gel did not occur. This shows that cell differentiation was the result of the nanovibrational stimulation provided by the bioreactor alone, and that other cell differentiating factors, such as stiffening of the collagen gel, did not contribute.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Mecanotransducción Celular , Células Madre Mesenquimatosas/citología , Osteogénesis , Ingeniería de Tejidos/métodos , Células Cultivadas , Diseño de Equipo , Humanos
6.
J Tissue Eng ; 9: 2041731418794007, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202512

RESUMEN

The regenerative potential of skeletal stem cells provides an attractive prospect to generate bone tissue needed for musculoskeletal reparation. A central issue remains efficacious, controlled cell differentiation strategies to aid progression of cell therapies to the clinic. The nacre surface from Pinctada maxima shells is known to enhance bone formation. However, to date, there is a paucity of information on the role of the topography of P. maxima surfaces, nacre and prism. To investigate this, nacre and prism topographical features were replicated onto polycaprolactone and skeletal stem cell behaviour on the surfaces studied. Skeletal stem cells on nacre surfaces exhibited an increase in cell area, increase in expression of osteogenic markers ALP (p < 0.05) and OCN (p < 0.01) and increased metabolite intensity (p < 0.05), indicating a role of nacre surface to induce osteogenic differentiation, while on prism surfaces, skeletal stem cells did not show alterations in cell area or osteogenic marker expression and a decrease in metabolite intensity (p < 0.05), demonstrating a distinct role for the prism surface, with the potential to maintain the skeletal stem cell phenotype.

7.
J Tissue Eng ; 9: 2041731418790694, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30116518

RESUMEN

Titanium (Ti) plays a predominant role as the material of choice in orthopaedic and dental implants. Despite the majority of Ti implants having long-term success, premature failure due to unsuccessful osseointegration leading to aseptic loosening is still too common. Recently, surface topography modification and biological/non-biological coatings have been integrated into orthopaedic/dental implants in order to mimic the surrounding biological environment as well as reduce the inflammation/infection that may occur. In this review, we summarize the impact of various Ti coatings on cell behaviour both in vivo and in vitro. First, we focus on the Ti surface properties and their effects on osteogenesis and then on bacterial adhesion and viability. We conclude from the current literature that surface modification of Ti implants can be generated that offer both osteoinductive and antimicrobial properties.

8.
J Tissue Eng ; 9: 2041731418789838, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083308

RESUMEN

The use of biomaterials in orthopaedics for joint replacement, fracture healing and bone regeneration is a rapidly expanding field. Infection of these biomaterials is a major healthcare burden, leading to significant morbidity and mortality. Furthermore, the cost to healthcare systems is increasing dramatically. With advances in implant design and production, research has predominately focussed on osseointegration; however, modification of implant material, surface topography and chemistry can also provide antibacterial activity. With the increasing burden of infection, it is vitally important that we consider the bacterial interaction with the biomaterial and the host when designing and manufacturing future implants. During this review, we will elucidate the interaction between patient, biomaterial surface and bacteria. We aim to review current and developing surface modifications with a view towards antibacterial orthopaedic implants for clinical applications.

9.
J Tissue Eng ; 9: 2041731418784098, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30034770

RESUMEN

The ability to influence stem cell differentiation is highly desirable as it would help us improve clinical outcomes for patients in various aspects. Many different techniques to achieve this have previously been investigated. This concise study, however, has focused on the topography on which cells grow. Current uncemented orthopaedic implants can fail if the implant fails to bind to the surrounding bone and, typically, forms a soft tissue interface which reduces direct bone contact. Here, we look at the effect of a previously reported nanotopography that utilises nanodisorder to influence mesenchymal stromal cell (as may be found in the bone marrow) differentiation towards bone and to also exert this effect on mature osteoblasts (as may be found in the bone). As topography is a physical technique, it can be envisaged for use in a range of materials such as polymers and metals used in the manufacture of orthopaedic implants.

10.
Oncogene ; 37(29): 3998-4012, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29691476

RESUMEN

Epstein-Barr virus (EBV)-associated Burkitt's lymphoma is characterised by the deregulation of c-Myc expression and a restricted viral gene expression pattern in which the EBV nuclear antigen-1 (EBNA1) is the only viral protein to be consistently expressed. EBNA1 is required for viral genome propagation and segregation during latency. However, it has been much debated whether the protein plays a role in viral-associated tumourigenesis. We show that the lymphomas which arise in EµEBNA1 transgenic mice are unequivocally linked to EBNA1 expression and that both C-Myc and Mdm2 deregulation are central to this process. Tumour cell survival is supported by IL-2 and there is a skew towards CD8-positive T cells in the tumour environment, while the immune check-point protein PD-L1 is upregulated in the tumours. Additionally, several isoforms of Mdm2 are upregulated in the EµEBNA1 tumours, with increased phosphorylation at ser166, an expression pattern not seen in Eµc-Myc transgenic tumours. Concomitantly, E2F1, Xiap, Mta1, C-Fos and Stat1 are upregulated in the tumours. Using four independent inhibitors of Mdm2 we demonstrate that the EµEBNA1 tumour cells are dependant upon Mdm2 for survival (as they are upon c-Myc) and that Mdm2 inhibition is not accompanied by upregulation of p53, instead cell death is linked to loss of E2F1 expression, providing new insight into the underlying tumourigenic mechanism. This opens a new path to combat EBV-associated disease.


Asunto(s)
Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Linfoma/virología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Animales , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/metabolismo , Muerte Celular/fisiología , Línea Celular , Factor de Transcripción E2F1/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Regulación Viral de la Expresión Génica/fisiología , Herpesvirus Humano 4/metabolismo , Humanos , Interleucina-2/metabolismo , Linfoma/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/fisiología
11.
Sci Rep ; 7(1): 16363, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29180787

RESUMEN

Engineering the interface between biomaterials and tissues is important to increase implant lifetime and avoid failures and revision surgeries. Permanent devices should enhance attachment and differentiation of stem cells, responsible for injured tissue repair, and simultaneously discourage bacterial colonization; this represents a major challenge. To take first steps towards such a multifunctional surface we propose merging topographical and biochemical cues on the surface of a clinically relevant material such as titanium. In detail, our strategy combines antibacterial nanotopographical features with integrin selective synthetic ligands that can rescue the adhesive capacity of the surfaces and instruct mesenchymal stem cell (MSC) response. To this end, a smooth substrate and two different high aspect ratio topographies have been produced and coated either with an αvß3-selective peptidomimetic, an α5ß1-selective peptidomimetic, or an RGD/PHSRN peptidic molecule. Results showed that antibacterial effects of the substrates could be maintained when tested on pathogenic Pseudomonas aeruginosa. Further, functionalization increased MSC adhesion to the surfaces and the αvß3-selective peptidomimetic-coated nanotopographies promoted osteogenesis. Such a dual physicochemical approach to achieve multifunctional surfaces represents a first step in the design of novel cell-instructive biomaterial surfaces.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Integrinas/química , Antibacterianos/metabolismo , Adhesión Bacteriana , Materiales Biocompatibles/metabolismo , Diferenciación Celular , Células Cultivadas , Materiales Biocompatibles Revestidos , Humanos , Integrinas/metabolismo , Ligandos , Células Madre Mesenquimatosas/citología , Viabilidad Microbiana , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Propiedades de Superficie , Titanio/química
12.
Acta Biomater ; 60: 220-231, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28754648

RESUMEN

Despite microsurgical repair, recovery of function following peripheral nerve injury is slow and often incomplete. Outcomes could be improved by an increased understanding of the molecular biology of regeneration and by translation of experimental bioengineering strategies. Topographical cues have been shown to be powerful regulators of the rate and directionality of neurite regeneration, and in this study we investigated the downstream molecular effects of linear micropatterned structures in an organotypic explant model. Linear topographical cues enhanced neurite outgrowth and our results demonstrated that the mTOR pathway is important in regulating these responses. mTOR gene expression peaked between 48 and 72h, coincident with the onset of rapid neurite outgrowth and glial migration, and correlated with neurite length at 48h. mTOR protein was located to glia and in a punctate distribution along neurites. mTOR levels peaked at 72h and were significantly increased by patterned topography (p<0.05). Furthermore, the topographical cues could override pharmacological inhibition. Downstream phosphorylation assays and inhibition of mTORC1 using rapamycin highlighted mTORC2 as an important mediator, and more specific therapeutic target. Quantitative immunohistochemistry confirmed the presence of the mTORC2 component rictor at the regenerating front where it co-localised with F-actin and vinculin. Collectively, these results provide a deeper understanding of the mechanism of action of topography on neural regeneration, and support the incorporation of topographical patterning in combination with pharmacological mTORC2 potentiation within biomaterial constructs used to repair peripheral nerves. STATEMENT OF SIGNIFICANCE: Peripheral nerve injury is common and functionally devastating. Despite microsurgical repair, healing is slow and incomplete, with lasting functional deficit. There is a clear need to translate bioengineering approaches and increase our knowledge of the molecular processes controlling nerve regeneration to improve the rate and success of healing. Topographical cues are powerful determinants of neurite outgrowth and represent a highly translatable engineering strategy. Here we demonstrate, for the first time, that microtopography potentiates neurite outgrowth via the mTOR pathway, with the mTORC2 subtype being of particular importance. These results give further evidence for the incorporation of microtopographical cues into peripheral nerve regeneration conduits and indicate that mTORC2 may be a suitable therapeutic target to potentiate nerve regeneration.


Asunto(s)
Regulación de la Expresión Génica , Diana Mecanicista del Complejo 2 de la Rapamicina/biosíntesis , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/metabolismo , Nervios Periféricos/fisiología , Serina-Treonina Quinasas TOR/biosíntesis , Animales , Modelos Animales de Enfermedad , Traumatismos de los Nervios Periféricos/patología , Nervios Periféricos/patología , Ratas , Ratas Sprague-Dawley
13.
Nat Biomed Eng ; 1(9): 758-770, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31015671

RESUMEN

Bone grafts are one of the most commonly transplanted tissues. However, autologous grafts are in short supply, and can be associated with pain and donor-site morbidity. The creation of tissue-engineered bone grafts could help to fulfil clinical demand and provide a crucial resource for drug screening. Here, we show that vibrations of nanoscale amplitude provided by a newly developed bioreactor can differentiate a potential autologous cell source, mesenchymal stem cells (MSCs), into mineralized tissue in 3D. We demonstrate that nanoscale mechanotransduction can stimulate osteogenesis independently of other environmental factors, such as matrix rigidity. We show this by generating mineralized matrix from MSCs seeded in collagen gels with stiffness an order of magnitude below the stiffness of gels needed to induce bone formation in vitro. Our approach is scalable and can be compatible with 3D scaffolds.

14.
Nat Biomed Eng ; 1(12): 1004, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-31015702

RESUMEN

In the version of this Article originally published, in Fig. 4f, the asterisk was missing; in Fig. 6a-c, the labels 'Wnt/ß-catenin signalling', 'Wnt/Ca+ pathway' and 'ERK' and their associated lines/arrows were missing; and in Fig. 6d and in the sentence beginning "In MSCs that were...", 'myosin' and 'nanostimulated', respectively, were spelt incorrectly. These errors have now been corrected in all versions of the Article.

15.
Sci Adv ; 2(8): e1600188, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27574702

RESUMEN

Growth factors (GFs) are powerful signaling molecules with the potential to drive regenerative strategies, including bone repair and vascularization. However, GFs are typically delivered in soluble format at supraphysiological doses because of rapid clearance and limited therapeutic impact. These high doses have serious side effects and are expensive. Although it is well established that GF interactions with extracellular matrix proteins such as fibronectin control GF presentation and activity, a translation-ready approach to unlocking GF potential has not been realized. We demonstrate a simple, robust, and controlled material-based approach to enhance the activity of GFs during tissue healing. The underlying mechanism is based on spontaneous fibrillar organization of fibronectin driven by adsorption onto the polymer poly(ethyl acrylate). Fibrillar fibronectin on this polymer, but not a globular conformation obtained on control polymers, promotes synergistic presentation of integrin-binding sites and bound bone morphogenetic protein 2 (BMP-2), which enhances mesenchymal stem cell osteogenesis in vitro and drives full regeneration of a nonhealing bone defect in vivo at low GF concentrations. This simple and translatable technology could unlock the full regenerative potential of GF therapies while improving safety and cost-effectiveness.


Asunto(s)
Proteína Morfogenética Ósea 2/genética , Fibronectinas/uso terapéutico , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Osteogénesis/efectos de los fármacos , Medicina Regenerativa , Resinas Acrílicas/química , Resinas Acrílicas/uso terapéutico , Sitios de Unión , Proteína Morfogenética Ósea 2/química , Regeneración Ósea/efectos de los fármacos , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Fibronectinas/química , Fibronectinas/genética , Humanos , Integrinas/genética , Integrinas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/genética , Polímeros/uso terapéutico
16.
Adv Healthc Mater ; 5(8): 947-55, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26890261

RESUMEN

A focus of orthopedic research is to improve osteointegration and outcomes of joint replacement. Material surface topography has been shown to alter cell adhesion, proliferation, and growth. The use of nanotopographical features to promote cell adhesion and bone formation is hoped to improve osteointegration and clinical outcomes. Use of block-copolymer self-assembled nanopatterns allows nanopillars to form via templated anodization with control over height and order, which has been shown to be of cellular importance. This project assesses the outcome of a human bone marrow-derived co-culture of adherent osteoprogenitors and osteoclast progenitors on polished titania and titania patterned with 15 nm nanopillars, fabricated by a block-copolymer templated anodization technique. Substrate implantation in rabbit femurs is performed to confirm the in vivo bone/implant integration. Quantitative and qualitative results demonstrate increased osteogenesis on the nanopillar substrate with scanning electron microscopy, histochemical staining, and real-time quantitative reverse-transcription polymerase chain reaction analysis performed. Osteoblast/osteoclast co-culture analysis shows an increase in osteoblastogenesis-related gene expression and reduction in osteoclastogenesis. Supporting this in vitro finding, in vivo implantation of substrates in rabbit femora indicates increased implant/bone contact by ≈20%. These favorable osteogenic characteristics demonstrate the potential of 15 nm titania nanopillars fabricated by the block-copolymer templated anodization technique.


Asunto(s)
Nanopartículas/química , Nanotecnología/métodos , Osteoblastos/citología , Osteoclastos/citología , Osteogénesis/efectos de los fármacos , Titanio/farmacología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Imagenología Tridimensional , Implantes Experimentales , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Nanopartículas/ultraestructura , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Conejos , Propiedades de Superficie , Fosfatasa Ácida Tartratorresistente/metabolismo
17.
J Funct Biomater ; 6(3): 598-622, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26193326

RESUMEN

Adult or mesenchymal stem cells (MSCs) have been found in different tissues in the body, residing in stem cell microenvironments called "stem cell niches". They play different roles but their main activity is to maintain tissue homeostasis and repair throughout the lifetime of an organism. Their ability to differentiate into different cell types makes them an ideal tool to study tissue development and to use them in cell-based therapies. This differentiation process is subject to both internal and external forces at the nanoscale level and this response of stem cells to nanostimuli is the focus of this review.

18.
Nanomedicine (Lond) ; 10(6): 949-57, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25867859

RESUMEN

BACKGROUND: Optimised nanotopography with controlled disorder (NSQ50) has been shown to stimulate osteogenesis and new bone formation in vitro. Following osteointegration the implant interface must undergo constant remodeling without inducing immune response. AIM: We aimed to assess the effect of nanotopography on bone remodelling using osteoclast and osteoblast cocultures. MATERIALS & METHODS: We developed a novel osteoblast/osteoclast coculture using solely human bone marrow derived mesenchymal and hematopeotic progenitor cells without extraneous supplementation. The coculture was been applied to NSQ50 or flat control polycarbonate substrates and assessed using immunohistochemical and immunofluorescent microscopy, scanning electron microscopy and quantitative reverse-transcription PCR methods. RESULTS: These confirm the presence of mature osteoclasts, osteoblasts and bone formation in coculture. Osteoblast differentiation increased on NSQ50, with no significant difference in osteoclast differentiation. CONCLUSION: Controlled disorder nanotopography appears to be selectively bioactive. We recommend this coculture method to be a better in vitro approximation of the osseous environment encountered by implants.


Asunto(s)
Células de la Médula Ósea/citología , Técnicas de Cultivo de Célula , Nanomedicina/métodos , Osteoblastos/citología , Osteoclastos/citología , Polímeros/química , Médula Ósea/patología , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Humanos , Inmunohistoquímica , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Cemento de Policarboxilato/química , Reacción en Cadena de la Polimerasa , Células del Estroma/citología
19.
Expert Rev Med Devices ; 11(4): 417-23, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24801757

RESUMEN

We consider three biophysical factors operating at the nanoscale which can affect gene expression, and thus, differentiation, in cultured mammalian cells. These factors are nanovibration, nanoforces and the local nanotopography. Work supporting these conclusions is reviewed. It is argued that stirring of the medium close to the cells cannot contribute to the effects. It is suggested that the three factors interact. Possible pathways by which this could occur are outlined.


Asunto(s)
Epigénesis Genética , Nanopartículas/química , Nanotecnología , Vibración , Animales , Humanos , Procesos Estocásticos , Factores de Tiempo
20.
Nanomedicine (Lond) ; 9(2): 207-20, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23631503

RESUMEN

AIM: Bacterial inclusion bodies (IBs) are nanostructured (submicron), pseudospherical proteinaceous particles produced in recombinant bacteria resulting from ordered protein aggregation. Being mechanically stable, several physicochemical and biological properties of IBs can be tuned by appropriate selection of the producer strain and of culture conditions. It has been previously shown that IBs favor cell adhesion and surface colonization by mammalian cell lines upon decoration on materials surfaces, but how these biomaterials could influence the behavior of mesenchymal stem cells remains to be explored. MATERIALS & METHODS: Here, the authors vary topography, stiffness and wettability using the IBs to decorate polycaprolactone surfaces on which mesenchymal stem cells are cultured. RESULTS: The authors show that these topographies can be used to specifically target osteogenesis from mesenchymal stem cells, and through metabolomics, they show that the cells have increased energy demand during this bone-related differentiation. CONCLUSION: IBs as topographies can be used not only to direct cell proliferation but also to target differentiation of mesenchymal stem cells.


Asunto(s)
Cuerpos de Inclusión/química , Células Madre Mesenquimatosas/citología , Osteogénesis , Poliésteres/química , Secuencia de Bases , Cartilla de ADN , Técnica del Anticuerpo Fluorescente , Humanos , Microscopía Electrónica de Rastreo , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA