Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 92(7): 073203, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34340447

RESUMEN

We compare two different experimental techniques for the magnetic-sub-level preparation of metastable 4He in the 23S1 level in a supersonic beam, namely, magnetic hexapole focusing and optical pumping by laser radiation. At a beam velocity of v = 830 m/s, we deduce from a comparison with a particle trajectory simulation that up to 99% of the metastable atoms are in the MJ″ = +1 sub-level after magnetic hexapole focusing. Using laser optical pumping via the 23P2-23S1 transition, we achieve a maximum efficiency of 94% ± 3% for the population of the MJ″ = +1 sub-level. For the first time, we show that laser optical pumping via the 23P1-23S1 transition can be used to selectively populate each of the three MJ″ sub-levels (MJ″ = -1, 0, +1). We also find that laser optical pumping leads to higher absolute atom numbers in specific MJ″ sub-levels than magnetic hexapole focusing.

2.
ACS Appl Mater Interfaces ; 12(32): 35986-35994, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32672034

RESUMEN

Hot electrons generated in metal nanoparticles can drive chemical reactions and selectively deposit cocatalyst materials on the plasmonic hotspots, the areas where the decay of plasmons takes place and the hot electrons are created. While hot electrons have been extensively used for nanomaterial formation, the utilization of hot holes for simultaneous cocatalyst deposition has not yet been explored. Herein, we demonstrate that hot holes can drive an oxidation reaction for the deposition of the manganese oxide (MnOx) cocatalyst on different plasmonic gold (Au) nanostructures on a thin titanium dioxide (TiO2) layer, excited at their surface plasmon resonance. An 80% correlation between the hot-hole deposition sites and the simulated plasmonic hotspot location is showed when considering the typical hot-hole diffusion length. Simultaneous deposition of more than one cocatalyst is also achieved on one of the investigated plasmonic systems (Au plasmonic nanoislands) through the hot-hole oxidation of a manganese salt and the hot-electron reduction of a platinum precursor in the same solution. These results add more flexibility to the use of hot carriers and open up the way for the design of complex photocatalytic nanostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...