Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38202629

RESUMEN

Naphtho[1,8-de][1,2]oxazin-4-ol and its acyl or benzyl derivatives ring open to various 2,8-dihydroxy-1-naphthonitriles, which, through (de)protection protocols and reduction, afford the target (E)-2-hydroxy-8-methoxy-1-naphthaldehyde. This was converted to its corresponding oxime, which was oxidatively o-cyclized with phenyliodine(III) diacetate (PIDA) to 9-methoxynaphtho[1,2-d]isoxazole 2-oxide. The latter, in deuterated DMSO at room temperature, was rearranged to its isomer 2-hydroxy-8-methoxy(naphthalen-1-yl)nitrile oxide. The isomerization was detected by time-course plot 1H NMR spectroscopy and further identified from its 13C NMR and HRMS spectra. The nitrile oxide was stable in (non)deuterated DMSO for at least 18 h. A 3,4-bis(2-hydroxy-8-methoxynaphthalen-1-yl)-1,2,5-oxadiazole 2-oxide, as a dimerization product or an isocyanate as a rearrangement isomer, was ruled out, the former by its HRMS spectrum and the latter by its 1,3-dipolar cycloaddition reactions to substituted isoxazoles.

2.
Chempluschem ; 87(12): e202200313, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36479609

RESUMEN

2-Hydroxy-1-naphthaldehyde oxime was oxidized by AgO (or Ag2 O), in presence of N-methyl morpholine N-oxide (NMMO), to the title spiro adduct-dimer (±)-Spiro{naphthalene-1(2H),4'-(naphtho[2',1':2,3]pyrano[4,5-c]furazan)}-2-one-11'-oxide by a Diels-Alder(D-A) type self-cycloaddition, through the agency of an o-naphthoquinone nitrosomethide (o-NQM). Moreover, 2-hydroxy-8-methoxy-1-naphthaldehyde oxime was prepared and subjected to the same oxidation conditions. Its sterically guided result, 9-methoxynaphtho[1,2-d]isoxazole, was isolated, instead of the expected spiro adduct. The peri intramolecular H bonding in the oxime is considered to have a key contribution to the outcome. Geometry and energy features of the oxidant- and stereo-guided selectivity of both oxidation outcomes have been explored by DFT, perturbation theory and coupled cluster calculations. The reaction free energy of the D-A intermolecular cycloaddition is calculated at -82.0 kcal/mol, indicating its predominance over the intramolecular cyclization of ca. -37.6 kcal/mol. The cycloaddition is facilitated by NMMO through dipolar interactions and hydrogen bonding with both metal complexes and o-NQM. The 8(peri)-OMe substitution of the reactant oxime sterically impedes formation of the spiro adduct, instead it undergoes a more facile cyclodehydration to the isoxazole structure by ca. 4.9 kcal/mol.

3.
Chem Biol Drug Des ; 90(5): 900-908, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28440951

RESUMEN

A series of 2,2'-dihydroxybenzophenones and their carbonyl N-analogues were studied as potential inhibitors against human glutathione transferase M1-1 (hGSTM1-1) purified from recombinant E. coli. Their screening revealed an inhibition against hGSTM1-1 within a range of 0-42% (25 µM). The IC50 values for the two stronger ones, 16 and 13, were 53.5 ± 5.6 µΜ and 28.5 ± 2.5 µΜ, respectively. The results were compared with earlier ones for isoenzymes hGSTP1-1 and hGSTA1-1 involved in MDR. All but one bind more strongly to A1-1, than M1-1 and P1-1, the latter being a poor binder. An order of potency A1-1 > > M1-1 >  P1-1 meritted 13, 14 and 16 as the most potent inhibitors with hGSTM1-1. Enzyme kinetics with hGSTM1-1 (Km(CDNB) 213 ± 10 µΜ and Km(GSH) 303 ± 11 µΜ) revealed a competitive modality for 16 (Ki(16)  = 22.3 ± 1.1 µΜ) and a mixed one for 13 versus CDNB (Ki(13)  = 33.3 ± 1.6 µM for the free enzyme and Ki(13) ' = 17.7 ± 1.7 µM for the enzyme-CDNB complex). 5- or 5'-Bromo- or phenyl-substituted (but not in combination) inhibitors, having a H-bonded oxime weakly acidic group of a small volume, are optimal candidates for binding hGSTM1-1. The outcome of the isoenzyme trilogy identified good binder leads for the investigated GSTs involved in MDR.


Asunto(s)
Benzofenonas/química , Benzofenonas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Gutatión-S-Transferasa pi/antagonistas & inhibidores , Glutatión Transferasa/antagonistas & inhibidores , Resistencia a Múltiples Medicamentos , Gutatión-S-Transferasa pi/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
4.
ChemMedChem ; 12(6): 408-419, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28252249

RESUMEN

Mental disorders are neuropsychiatric conditions that are marked by unusual or irregular thinking, feelings, or behavior, and lead to distress and/or impaired functions. Major psychiatric conditions are depression, anxiety, and psychoses of various types. Their etiopathogeneses, of a primary or secondary origin, are associated with genetic and environmental factors. They are commonly treated with psychoactive drugs (also known as psychotropics), which target serotonin, dopamine, norepinephrine, glutamate, and nuclear receptors (NRs), including retinoic acid receptor-related orphan receptors (RORs) and other receptors in the central nervous system (CNS). Herein we present a diverse array of isoxazole derivatives, among which are some prominent marketed drugs. Some of the derivatives and forms, including N-oxides, are under either (pre)clinical evaluation or patent protection as new generation of psychotropics, and a few have effective blood-brain barrier (BBB) permeability. Various drug-like isoxazol(in)es and their structural features and efficiency, modified through scaffold hopping, are described and discussed in the context of treating neuropsychiatric conditions.


Asunto(s)
Isoxazoles/química , Óxidos/química , Psicotrópicos/química , Barrera Hematoencefálica/metabolismo , Diseño de Fármacos , Humanos , Trastornos Mentales/tratamiento farmacológico , Nitrógeno/química , Psicotrópicos/síntesis química , Psicotrópicos/uso terapéutico , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/metabolismo
5.
ChemistrySelect ; 1(15): 4520-4532, 2016 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32328512

RESUMEN

H-bonding, as a non covalent stabilizing interaction of diverse nature, has a central role in the structure, function and dynamics of chemical and biological processes, pivotal to molecular recognition and eventually to drug design. Types of conventional and non conventional (H-H, dihydrogen, H- π, CH- π, anti- , proton coordination and H-S) H-bonding interactions are discussed as well as features emerging from their interplay, such as cooperativity (σ- and π-) effects and allostery. Its utility in many applications is described. Catalysis, proton and electron transfer processes in various materials or supramolecular architectures of preorganized hosts for guest binding, are front-line technology. The H-bond-related concept of proton transfer (PT) addresses energy issues or deciphering the mechanism of many natural and synthetic processes. PT is also of paramount importance in the functions of cells and is assisted by large complex proteins embedded in membranes. Both intermolecular and intramolecular PT in H-bonded systems has received attention, theoretically and experimentally, using prototype molecules. It is found in rearrangement reactions, protein functions, and enzyme reactions or across proton channels and pumps. Investigations on the competition between intra- and intermolecular H bonding are discussed. Of particular interest is the H-bond furcation, a common phenomenon in protein-ligand binding. Multiple H-bonding (H-bond furcation) is observed in supramolecular structures.

6.
Chem Biol Drug Des ; 86(5): 1055-63, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25891019

RESUMEN

The selectivity of certain benzophenones and their carbonyl N-analogues was investigated towards the human GSTP1-1 allozymes A, B and C involved in MDR. The allozymes were purified from extracts derived from E. coli harbouring the plasmids pEXP5-CT/TOPO-TA-hGSTP1*A, pOXO4-hGSTP1*B or pOXO4-hGSTP1*C. Compound screening with each allozyme activity indicated three compounds with appreciable inhibitory potencies, 12 and 13 with P1-1A 62% and 67%, 11 and 12 with P1-1C 51% and 70%, whereas that of 15 fell behind with P1-1B (41%). These findings were confirmed by IC50 values (74-125 µm). Enzyme inhibition kinetics, aided by molecular modelling and docking, revealed that there is competition with the substrate CDNB for the same binding site on the allozyme (Ki(13/A)  = 63.6 ± 3.0 µm, Ki(15/B)  = 198.6 ± 14.3 µm, and Ki(11/C)  = 16.5 ± 2.7 µm). These data were brought into context by an in silico structural comparative analysis of the targeted proteins. Although the screened compounds showed moderate inhibitory potency against hGSTP1-1, remarkably, some of them demonstrated absolute isoenzyme and/or allozyme selectivity.


Asunto(s)
Benzofenonas/química , Benzofenonas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Gutatión-S-Transferasa pi/antagonistas & inhibidores , Glutatión Transferasa/antagonistas & inhibidores , Isoenzimas/antagonistas & inhibidores , Gutatión-S-Transferasa pi/química , Gutatión-S-Transferasa pi/metabolismo , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Simulación del Acoplamiento Molecular
7.
Bioorg Med Chem ; 22(15): 3957-70, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25002233

RESUMEN

The MDR-involved human GSTA1-1, an important isoenzyme overexpressed in several tumors leading to chemotherapeutic-resistant tumour cells, has been targeted by 2,2'-dihydroxybenzophenones and some of their carbonyl N-analogues, as its potential inhibitors. A structure-based library of the latter was built-up by a nucleophilic cleavage of suitably substituted xanthones to 2,2'-dihydroxy-benzophenones (5-9) and subsequent formation of their N-derivatives (oximes 11-13 and N-acyl hydrazones 14-16). Screening against hGSTA1-1 led to benzophenones 6 and 8, and hydrazones 14 and 16, having the highest inhibition potency (IC50 values in the range 0.18 ± 0.02 to 1.77 ± 0.10 µM). Enzyme inhibition kinetics, molecular modeling and docking studies showed that they interact primarily at the CDNB-binding catalytic site of the enzyme. In addition, the results from cytotoxicity studies with human colon adenocarcinoma cells showed low LC50 values for benzophenone 6 and its N-acyl hydrazone analogue 14 (31.4 ± 0.4 µM and 87 ± 1.9 µM, respectively), in addition to the strong enzyme inhibition profile (IC50(6)=1,77 ± 0.10 µM; IC50(14)=0.33 ± 0.05 µM). These structures may serve as leads for the design of new potent mono- and bi-functional inhibitors and pro-drugs against human GTSs.


Asunto(s)
Benzofenonas/química , Inhibidores Enzimáticos/química , Glutatión Transferasa/antagonistas & inhibidores , Isoenzimas/antagonistas & inhibidores , Benzofenonas/metabolismo , Benzofenonas/toxicidad , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/toxicidad , Glutatión Transferasa/metabolismo , Humanos , Isoenzimas/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Unión Proteica , Relación Estructura-Actividad , Termodinámica
8.
J Biomol Screen ; 18(9): 1092-102, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23749766

RESUMEN

Glutathione transferases (GSTs) are cell detoxifiers involved in multiple drug resistance (MDR), hampering the effectiveness of certain anticancer drugs. To our knowledge, this is the first report on well-defined synthetic xanthones as GST inhibitors. Screening 18 xanthones revealed three derivatives bearing a bromomethyl and a methyl group (7) or two bromomethyl groups (8) or an aldehyde group (17), with high inhibition potency (>85%), manifested by low IC(50) values (7: 1.59 ± 0.25 µM, 8: 5.30 ± 0.30 µM, and 17: 8.56 ± 0.14 µM) and a competitive modality of inhibition versus CDNB (Ki(7) = 0.76 ± 0.18 and Ki(17) = 1.69 ± 0.08 µM). Of them, derivative 17 readily inhibited hGSTA1-1 in colon cancer cell lysate (IC(50) = 10.54 ± 2.41 µM). Furthermore, all three derivatives were cytotoxic to Caco-2 intact cells, with 17 being the least cytotoxic (LC(50) = 151.3 ± 16.3 µM). The xanthone scaffold may be regarded as a pharmacophore for hGSTA1-1 and the three derivatives, especially 17, as potent precursors for the synthesis of new inhibitors and conjugate prodrugs for human GSTs.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Glutatión Transferasa/antagonistas & inhibidores , Xantonas/farmacología , Antineoplásicos/síntesis química , Unión Competitiva , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Compuestos de Diazonio/farmacología , Relación Dosis-Respuesta a Droga , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Pruebas de Enzimas , Inhibidores Enzimáticos/síntesis química , Glutatión Transferasa/metabolismo , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Xantonas/síntesis química
9.
Org Lett ; 11(14): 2964-7, 2009 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-19586060

RESUMEN

Several novel 1,1-disubstituted-8-hydroxynaphthalen-2(1H)-ones have been efficiently synthesized via a two-step sequence from 2-hydroxy-1-naphthaldehyde oxime. The methodology involves oxidative ring closure and alkoxylation to 3a-alkoxynaphtho[1,8-de][1,2]oxazin-4(3aH)-ones, followed by thermal ring-opening. Both thermal and microwave irradiation conditions were used. A novel one-pot reaction of oxime to 8-isopropoxynaphthalene-1,7-diol using microwave irradiation is also reported.


Asunto(s)
Naftoles/síntesis química , Oximas/química , Catálisis , Técnicas Químicas Combinatorias , Microondas , Estructura Molecular , Naftoles/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA