Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(42): 11913-11918, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27698120

RESUMEN

Dietary restriction (DR), such as calorie restriction (CR) or methionine (Met) restriction, extends the lifespan of diverse model organisms. Although studies have identified several metabolites that contribute to the beneficial effects of DR, the molecular mechanism underlying the key metabolites responsible for DR regimens is not fully understood. Here we show that stimulating S-adenosyl-l-methionine (AdoMet) synthesis extended the lifespan of the budding yeast Saccharomyces cerevisiae The AdoMet synthesis-mediated beneficial metabolic effects, which resulted from consuming both Met and ATP, mimicked CR. Indeed, stimulating AdoMet synthesis activated the universal energy-sensing regulator Snf1, which is the S. cerevisiae ortholog of AMP-activated protein kinase (AMPK), resulting in lifespan extension. Furthermore, our findings revealed that S-adenosyl-l-homocysteine contributed to longevity with a higher accumulation of AdoMet only under the severe CR (0.05% glucose) conditions. Thus, our data uncovered molecular links between Met metabolites and lifespan, suggesting a unique function of AdoMet as a reservoir of Met and ATP for cell survival.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Longevidad , S-Adenosilmetionina/metabolismo , Adenosina Trifosfato/metabolismo , Restricción Calórica , Epistasis Genética , Genes Dominantes , Glucano 1,3-beta-Glucosidasa/genética , Glucano 1,3-beta-Glucosidasa/metabolismo , Redes y Vías Metabólicas , Metionina/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Biosci Biotechnol Biochem ; 77(10): 2002-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24096659

RESUMEN

Hog1 of Saccharomyces cerevisiae is activated by hyperosmotic stress, and this leads to cell-cycle delay in G1, but the mechanism by which cells restart from G1 delay remains elusive. We found that Whi3, a negative regulator of G1 cyclin, counteracted Hog1 in the restart from G1 delay caused by osmotic stress. We have found that phosphorylation of Ser-568 in Whi3 by RAS/cAMP-dependent protein kinase (PKA) plays an inhibitory role in Whi3 function. In this study we found that the phosphomimetic Whi3 S568D mutant, like the Δwhi3 strain, slightly suppressed G1 delay of Δhog1 cells under osmotic stress conditions, whereas the non-phosphorylatable S568A mutation of Whi3 caused prolonged G1 arrest of Δhog1 cells. These results indicate that Hog1 activity is required for restart from G1 arrest under osmotic stress conditions, whereas Whi3 acts as a negative regulator for this restart mechanism.


Asunto(s)
Puntos de Control de la Fase G1 del Ciclo Celular , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Presión Osmótica , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Ciclinas/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulación hacia Arriba
3.
J Biol Chem ; 288(15): 10558-66, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23471970

RESUMEN

The Start/G1 phase in the cell cycle is an important period during which cells determine their developmental fate, onset of mitotic progression, or the switch to developmental stages in response to both external and internal signals. In the budding yeast Saccharomyces cerevisiae, Whi3, a negative regulator of the G1 cyclins, has been identified as a positive regulator of cell size control and is involved in the regulation of Start. However, the regulatory pathway of Whi3 governing the response to multiple signals remains largely unknown. Here, we show that Whi3 is phosphorylated by the Ras/cAMP-dependent protein kinase (PKA) and that phosphorylation of Ser-568 in Whi3 by PKA plays an inhibitory role in Whi3 function. Phosphorylation of Whi3 by PKA led to its decreased interaction with CLN3 G1 cyclin mRNA and was required for the promotion of G1/S progression. Furthermore, we demonstrate that the phosphomimetic S568D mutation of Whi3 prevented the developmental fate switch to sporulation or invasive growth. Thus, PKA modulated the function of Whi3 by phosphorylation, thus implicating PKA-mediated modulation of Whi3 in multiple cellular events.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sustitución de Aminoácidos , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Ciclinas/genética , Ciclinas/metabolismo , Mutación Missense , Fosforilación/fisiología , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
J Biol Chem ; 286(33): 28681-28687, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21712379

RESUMEN

In eukaryotic cells, Ca(2+)-triggered signaling pathways are used to regulate a wide variety of cellular processes. Calcineurin, a highly conserved Ca(2+)/calmodulin-dependent protein phosphatase, plays key roles in the regulation of diverse biological processes in organisms ranging from yeast to humans. We isolated a mutant of the SIR3 gene, implicated in the regulation of life span, as a suppressor of the Ca(2+) sensitivity of zds1Δ cells in the budding yeast Saccharomyces cerevisiae. Therefore, we investigated a relationship between Ca(2+) signaling and life span in yeast. Here we show that Ca(2+) affected the replicative life span (RLS) of yeast. Increased external and intracellular Ca(2+) levels caused a reduction in their RLS. Consistently, the increase in calcineurin activity by either the zds1 deletion or the constitutively activated calcineurin reduced RLS. Indeed, the shortened RLS of zds1Δ cells was suppressed by the calcineurin deletion. Further, the calcineurin deletion per se promoted aging without impairing the gene silencing typically observed in short-lived sir mutants, indicating that calcineurin plays an important role in a regulation of RLS even under normal growth condition. Thus, our results indicate that Ca(2+) homeostasis/Ca(2+) signaling are required to regulate longevity in budding yeast.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Eliminación de Gen , Silenciador del Gen , Humanos , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...