Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 1372, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636462

RESUMEN

Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, 19F NMR is used to delineate the effects of cations on functional states of the adenosine A2A GPCR. While Na+ reinforces an inactive ensemble and a partial-agonist stabilized state, Ca2+ and Mg2+ shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridge specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. An understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu.


Asunto(s)
Adenosina-5'-(N-etilcarboxamida)/química , Adenosina/química , Calcio/química , Magnesio/química , Receptor de Adenosina A2A/química , Triazinas/química , Triazoles/química , Adenosina/metabolismo , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calcio/metabolismo , Cationes Bivalentes , Cristalografía por Rayos X , Expresión Génica , Humanos , Cinética , Magnesio/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Termodinámica , Triazinas/metabolismo , Triazoles/metabolismo
2.
Front Immunol ; 9: 413, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29545810

RESUMEN

Antibodies can rapidly evolve in specific response to antigens. Affinity maturation drives this evolution through cycles of mutation and selection leading to enhanced antibody specificity and affinity. Elucidating the biophysical mechanisms that underlie affinity maturation is fundamental to understanding B-cell immunity. An emergent hypothesis is that affinity maturation reduces the conformational flexibility of the antibody's antigen-binding paratope to minimize entropic losses incurred upon binding. In recent years, computational and experimental approaches have tested this hypothesis on a small number of antibodies, often observing a decrease in the flexibility of the complementarity determining region (CDR) loops that typically comprise the paratope and in particular the CDR-H3 loop, which contributes a plurality of antigen contacts. However, there were a few exceptions and previous studies were limited to a small handful of cases. Here, we determined the structural flexibility of the CDR-H3 loop for thousands of recent homology models of the human peripheral blood cell antibody repertoire using rigidity theory. We found no clear delineation in the flexibility of naïve and antigen-experienced antibodies. To account for possible sources of error, we additionally analyzed hundreds of human and mouse antibodies in the Protein Data Bank through both rigidity theory and B-factor analysis. By both metrics, we observed only a slight decrease in the CDR-H3 loop flexibility when comparing affinity matured antibodies to naïve antibodies, and the decrease was not as drastic as previously reported. Further analysis, incorporating molecular dynamics simulations, revealed a spectrum of changes in flexibility. Our results suggest that rigidification may be just one of many biophysical mechanisms for increasing affinity.


Asunto(s)
Sitios de Unión de Anticuerpos/genética , Regiones Determinantes de Complementariedad/genética , Cadenas Pesadas de Inmunoglobulina/genética , Animales , Afinidad de Anticuerpos , Especificidad de Anticuerpos/inmunología , Antígenos/inmunología , Regiones Determinantes de Complementariedad/química , Cristalografía por Rayos X , Bases de Datos de Proteínas , Humanos , Inmunidad Humoral , Cadenas Pesadas de Inmunoglobulina/química , Memoria Inmunológica , Ratones , Modelos Químicos , Simulación de Dinámica Molecular , Conformación Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...