Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Transl Psychiatry ; 14(1): 164, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531856

RESUMEN

Quantitative susceptibility mapping is a magnetic resonance imaging technique that measures brain tissues' magnetic susceptibility, including iron deposition and myelination. This study examines the relationship between subcortical volume and magnetic susceptibility and determines specific differences in these measures among patients with major depressive disorder (MDD), patients with schizophrenia, and healthy controls (HCs). This was a cross-sectional study. Sex- and age- matched patients with MDD (n = 49), patients with schizophrenia (n = 24), and HCs (n = 50) were included. Magnetic resonance imaging was conducted using quantitative susceptibility mapping and T1-weighted imaging to measure subcortical susceptibility and volume. The acquired brain measurements were compared among groups using analyses of variance and post hoc comparisons. Finally, a general linear model examined the susceptibility-volume relationship. Significant group-level differences were found in the magnetic susceptibility of the nucleus accumbens and amygdala (p = 0.045). Post-hoc analyses indicated that the magnetic susceptibility of the nucleus accumbens and amygdala for the MDD group was significantly higher than that for the HC group (p = 0.0054, p = 0.0065, respectively). However, no significant differences in subcortical volume were found between the groups. The general linear model indicated a significant interaction between group and volume for the nucleus accumbens in MDD group but not schizophrenia or HC groups. This study showed susceptibility alterations in the nucleus accumbens and amygdala in MDD patients. A significant relationship was observed between subcortical susceptibility and volume in the MDD group's nucleus accumbens, which indicated abnormalities in myelination and the dopaminergic system related to iron deposition.


Asunto(s)
Trastorno Depresivo Mayor , Esquizofrenia , Humanos , Trastorno Depresivo Mayor/patología , Esquizofrenia/patología , Estudios Transversales , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Hierro
2.
Alcohol Clin Exp Res (Hoboken) ; 48(1): 58-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206287

RESUMEN

BACKGROUND: To elucidate the neurobiology underlying alcohol's effect on the human brain, we examined the acute effects of moderate alcohol administration on levels of glutamatergic neurometabolites and N-acetylaspartate, an amino acid found in neurons, may reflect disordered neuronal integrity. METHODS: Eighteen healthy Japanese participants (7 males/11 females) aged 20-30 years who were heterozygous for an inactive allele of acetaldehyde dehydrogenase-2 (ALDH/*1/*2) were included. Participants underwent an intravenous alcohol infusion using the clamp method at a target blood alcohol concentration (BAC) of 0.50 mg/mL for 90 min within a range of ±0.05 mg/mL. We examined glutamate + glutamine (Glx) and N-acetylaspartate N-acetylaspartylglutamate (NAA) levels in the midcingulate cortex (MCC) using 3 T 1 H-MRS PRESS at baseline, 90 min, and 180 min (i.e., 90 min after alcohol infusion was finished). A two-way repeated-measures analysis of variance was used to assess longitudinal changes in Glx and NAA levels, with time and sex as within- and between-subject factors, respectively. Pearson's correlation coefficients were calculated among neurometabolite levels and BAC or blood acetaldehyde concentration (BAAC). RESULTS: Both Glx (F(2,32) = 8.15, p = 0.004, η2 = 0.15) and NAA (F(2,32) = 5.01, p = 0.04, η2 = 0.07) levels were increased after alcohol injection. There were no sex or time × sex interaction effects observed. NAA levels were positively correlated with BAAC at 90 min (r(13) = 0.77, p = 0.01). There were no associations between neurometabolite levels and BAC. CONCLUSIONS: Both Glx and NAA levels in the MCC increased in response to the administration of moderate concentrations of alcohol. Given positive associations between NAA levels and BAAC and the hypothetical glutamate release via dopamine pathways, the effects of drinking on the MCC in the acute phase may be ascribed to acetaldehyde metabolized from alcohol.

3.
Schizophr Bull ; 50(2): 393-402, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38007605

RESUMEN

BACKGROUND AND HYPOTHESIS: Given the heterogeneity and possible disease progression in schizophrenia, identifying the neurobiological subtypes and progression patterns in each patient may lead to novel biomarkers. Here, we adopted data-driven machine-learning techniques to identify the progression patterns of brain morphological changes in schizophrenia and investigate the association with treatment resistance. STUDY DESIGN: In this cross-sectional multicenter study, we included 177 patients with schizophrenia, characterized by treatment response or resistance, with 3D T1-weighted magnetic resonance imaging. Cortical thickness and subcortical volumes calculated by FreeSurfer were converted into z scores using 73 healthy controls data. The Subtype and Stage Inference (SuStaIn) algorithm was used for unsupervised machine-learning analysis. STUDY RESULTS: SuStaIn identified 3 different subtypes: (1) subcortical volume reduction (SC) type (73 patients), in which volume reduction of subcortical structures occurs first and moderate cortical thinning follows, (2) globus pallidus hypertrophy and cortical thinning (GP-CX) type (42 patients), in which globus pallidus hypertrophy initially occurs followed by progressive cortical thinning, and (3) cortical thinning (pure CX) type (39 patients), in which thinning of the insular and lateral temporal lobe cortices primarily happens. The remaining 23 patients were assigned to baseline stage of progression (no change). SuStaIn also found 84 stages of progression, and treatment-resistant schizophrenia showed significantly more progressed stages than treatment-responsive cases (P = .001). The GP-CX type presented earlier stages than the pure CX type (P = .009). CONCLUSIONS: The brain morphological progressions in schizophrenia can be classified into 3 subtypes, and treatment resistance was associated with more progressed stages, which may suggest a novel biomarker.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/complicaciones , Estudios Transversales , Adelgazamiento de la Corteza Cerebral/patología , Imagen por Resonancia Magnética , Lóbulo Temporal/patología , Progresión de la Enfermedad , Hipertrofia/complicaciones , Hipertrofia/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología
4.
Schizophr Bull ; 50(2): 382-392, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-37978044

RESUMEN

BACKGROUND AND HYPOTHESIS: Schizophrenia is associated with widespread cortical thinning and abnormality in the structural covariance network, which may reflect connectome alterations due to treatment effect or disease progression. Notably, patients with treatment-resistant schizophrenia (TRS) have stronger and more widespread cortical thinning, but it remains unclear whether structural covariance is associated with treatment response in schizophrenia. STUDY DESIGN: We organized a multicenter magnetic resonance imaging study to assess structural covariance in a large population of TRS and non-TRS, who had been resistant and responsive to non-clozapine antipsychotics, respectively. Whole-brain structural covariance for cortical thickness was assessed in 102 patients with TRS, 77 patients with non-TRS, and 79 healthy controls (HC). Network-based statistics were used to examine the difference in structural covariance networks among the 3 groups. Moreover, the relationship between altered individual differentiated structural covariance and clinico-demographics was also explored. STUDY RESULTS: Patients with non-TRS exhibited greater structural covariance compared with HC, mainly in the fronto-temporal and fronto-occipital regions, while there were no significant differences in structural covariance between TRS and non-TRS or HC. Higher individual differentiated structural covariance was associated with lower general scores of the Positive and Negative Syndrome Scale in the non-TRS group, but not in the TRS group. CONCLUSIONS: These findings suggest that reconfiguration of brain networks via coordinated cortical thinning is related to treatment response in schizophrenia. Further longitudinal studies are warranted to confirm if greater structural covariance could serve as a marker for treatment response in this disease.


Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/patología , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Adelgazamiento de la Corteza Cerebral , Encéfalo/patología , Imagen por Resonancia Magnética/métodos
5.
Front Neurosci ; 17: 1196805, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600001

RESUMEN

Introduction: Glutamatergic neurometabolites play important roles in the basal ganglia, a hub of the brain networks involved in musical rhythm processing. We aimed to investigate the relationship between rhythm processing abilities and glutamatergic neurometabolites in the caudate. Methods: We aquired Glutamatergic function in healthy individuals employing proton magnetic resonance spectroscopy. We targeted the right caudate and the dorsal anterior cingulate cortex (dACC) as a control region. Rhythm processing ability was assessed by the Harvard Beat Assessment Test (H-BAT). Results: We found negative correlations between the production part of the Beat Saliency Test in the H-BAT and glutamate and glutamine levels in the caudate (r = -0.693, p = 0.002) whereas there was no such association in the dACC. Conclusion: These results suggest that higher glutamatergic neurometabolite levels in the caudate may contribute to rhythm processing, especially the ability to produce meter in music precisely.

6.
Artículo en Inglés | MEDLINE | ID: mdl-36754485

RESUMEN

BACKGROUND: The glutamatergic system is thought to play an important role in the pathophysiology of bipolar disorder (BD). While there has been an increase in proton magnetic resonance spectroscopy studies examining this neurotransmission system, the results are inconsistent. Possible reasons for the inconsistency, including clinical features such as mood state and childhood versus adulthood age, were not addressed in previous meta-analyses. METHODS: This systematic review and meta-analysis of proton magnetic resonance spectroscopy studies of BD included 40 studies, with 1135 patients with BD and 964 healthy control (HC) subjects. RESULTS: Glutamate plus glutamine and glutamine levels in the anterior cingulate cortex of patients with BD were significantly elevated compared with those of HC subjects (standardized mean difference = 0.42, 0.48, respectively). Subgroup analyses showed that adult BD patients had significantly higher levels of glutamate plus glutamine than adult HC subjects, but this was not the case in pediatric patients. For mood states, anterior cingulate cortex glutamate plus glutamine levels were higher in patients with bipolar depression than those in HC subjects. CONCLUSIONS: Our results imply that glutamatergic dysfunction in the anterior cingulate cortex may be implicated in the pathophysiology of BD, which is most evident in adult BD patients and patients with bipolar depression.


Asunto(s)
Trastorno Bipolar , Adulto , Humanos , Niño , Glutamina , Espectroscopía de Protones por Resonancia Magnética/métodos , Ácido Glutámico , Giro del Cíngulo
7.
Schizophr Res ; 252: 69-76, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36634450

RESUMEN

Accumulating evidence indicates that pathophysiology of schizophrenia involves abnormalities in the dopamine and glutamatergic neuronal systems. Antipsychotic medications are currently used to normalize dopaminergic function for schizophrenia. However, approximately 30 % of the patients have no response to antipsychotic medications, which is classified as treatment-resistant schizophrenia (TRS). Furthermore, dopamine and glutamate levels in the neural basis have been reported to differ between TRS and non-TRS. In this study, we assumed that these differences may affect music rhythm perception and production abilities between the two groups. We examined fifty-seven schizophrenia (26 TRS, 31 non-TRS) and thirty-one healthy controls (HCs) by using the Harvard Beat Assessment Test (H-BAT). As a result, we found that rhythm production was worse in patients with TRS compared to patients with non-TRS and HCs, while no difference was observed between patients with non-TRS and HCs. In addition, rhythm perception and production abilities were impaired in the whole patient group compared with HCs. Furthermore, in the patient group, the deficits were correlated with cognitive impairments. Collectively, these results suggest that patients with schizophrenia may have rhythm processing deficits, with particular a rhythm production problem in the TRS group.


Asunto(s)
Antipsicóticos , Música , Esquizofrenia , Humanos , Antipsicóticos/uso terapéutico , Dopamina , Percepción
8.
Psychiatry Clin Neurosci ; 76(11): 587-594, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36111425

RESUMEN

BACKGROUND: Gamma-Aminobutyric Acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. GABAergic dysfunction has been implicated in the pathophysiology of schizophrenia. Clozapine, the only approved drug for treatment-resistant schizophrenia (TRS), involves the GABAergic system as one of its targets. However, no studies have investigated the relationship between brain GABA levels, as measured by proton magnetic resonance spectroscopy (1 H-MRS), and clozapine response in patients with TRS. METHODS: This study enrolled patients with TRS who did not respond to clozapine (ultra-resistant schizophrenia: URS) and who responded to clozapine (non-URS), patients with schizophrenia who responded to first-line antipsychotics (first-line responders: FLR), and healthy controls (HCs). We measured GABA levels in the midcingulate cortex (MCC) using 3T 1 H-MRS and compared these levels among the groups. The associations between GABA levels and symptom severity were also explored within the patient groups. RESULTS: A total of 98 participants (URS: n = 22; non-URS: n = 25; FLR: n = 16; HCs: n = 35) completed the study. We found overall group differences in MCC GABA levels (F(3,86) = 3.25, P = 0.04). Specifically, patients with URS showed higher GABA levels compared to those with non-URS (F(1,52) = 8.40, P = 0.03, Cohen's d = 0.84). MCC GABA levels showed no associations with any of the symptom severity scores within each group or the entire patient group. CONCLUSION: Our study is the first to report elevated GABA levels in the MCC in patients with schizophrenia resistant to clozapine treatment compared with those responsive to clozapine. Longitudinal studies are required to evaluate if GABA levels are a suitable biomarker to predict clozapine resistance.


Asunto(s)
Clozapina , Esquizofrenia , Humanos , Clozapina/farmacología , Clozapina/uso terapéutico , Espectroscopía de Protones por Resonancia Magnética/métodos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Esquizofrenia Resistente al Tratamiento , Ácido gamma-Aminobutírico
9.
J Psychiatry Neurosci ; 47(5): E325-E335, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36104082

RESUMEN

BACKGROUND: The efficacy of repetitive transcranial magnetic stimulation (rTMS) to the left dorsolateral prefrontal cortex (dlPFC) has been established in patients with treatment-resistant depression (TRD), suggesting that alterations in signal propagation from the left dlPFC to other brain regions may be linked to the pathophysiology of TRD. Alterations at the cellular level, including dysfunction of oligodendrocytes, may contribute to these network abnormalities. The objectives of the present study were to compare signal propagation from the left dlPFC to other neural networks in patients with TRD and healthy controls. We used TMS combined with electroencephalography to explore links between cell-specific gene expression and signal propagation in TRD using a virtual-histology approach. METHODS: We examined source-level estimated signal propagation from the left dlPFC to the 7 neural networks in 60 patients with TRD and 30 healthy controls. We also calculated correlations between the interregional profiles of altered signal propagation and gene expression for 9 neural cell types derived from the Allen Human Brain Atlas data set. RESULTS: Signal propagation from the left dlPFC to the salience network was reduced in the θ and α bands in patients with TRD (p = 0.0055). Furthermore, this decreased signal propagation was correlated with cellspecific gene expression of oligodendrocytes (p < 0.000001). LIMITATIONS: These results show only part of the pathophysiology of TRD, because stimulation was limited to the left dlPFC. CONCLUSION: Reduced signal propagation from the left dlPFC to the salience network may represent a pathophysiological endophenotype of TRD; this finding may be associated with reduced expression of oligodendrocytes.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Estimulación Magnética Transcraneal , Depresión , Trastorno Depresivo Resistente al Tratamiento/diagnóstico por imagen , Trastorno Depresivo Resistente al Tratamiento/metabolismo , Trastorno Depresivo Resistente al Tratamiento/terapia , Humanos , Oligodendroglía/metabolismo , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/metabolismo , Estimulación Magnética Transcraneal/métodos
10.
Sci Rep ; 12(1): 7896, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550587

RESUMEN

Acute alcohol administration affects functional connectivity, yet the underlying mechanism is unknown. Previous work suggested that a moderate dose of alcohol reduces the activity of gamma-aminobutyric acidergic (GABAergic) interneurons, thereby leading to a state of pyramidal disinhibition and hyperexcitability. The present study aims to relate alcohol-induced changes in functional connectivity to regional genetic markers of GABAergic interneurons. Healthy young adults (N = 15, 5 males) underwent resting state functional MRI scanning prior to alcohol administration, immediately and 90 min after alcohol administration. Functional connectivity density mapping was performed to quantify alcohol-induced changes in resting brain activity between conditions. Patterns of differences between conditions were related to regional genetic markers that express the primary GABAergic cortical interneuron subtypes (parvalbumin, somatostatin, and 5-hydroxytryptamine receptor 3A) obtained from the Allen Human Brain Atlas. Acute alcohol administration increased local functional connectivity density within the visual cortex, sensorimotor cortex, thalamus, striatum, and cerebellum. Patterns of alcohol-induced changes in local functional connectivity density inversely correlated with somatostatin cortical gene expression. These findings suggest that somatostatin-expressing interneurons modulate alcohol-induced changes in functional connectivity in healthy individuals.


Asunto(s)
Interneuronas , Parvalbúminas , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Marcadores Genéticos , Humanos , Interneuronas/metabolismo , Masculino , Parvalbúminas/metabolismo , Somatostatina/metabolismo
11.
Mol Psychiatry ; 27(7): 2950-2967, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35444257

RESUMEN

Antipsychotic drugs are the mainstay in the treatment of schizophrenia. However, one-third of patients do not show adequate improvement in positive symptoms with non-clozapine antipsychotics. Additionally, approximately half of them show poor response to clozapine, electroconvulsive therapy, or other augmentation strategies. However, the development of novel treatment for these conditions is difficult due to the complex and heterogenous pathophysiology of treatment-resistant schizophrenia (TRS). Therefore, this review provides key findings, potential treatments, and a roadmap for future research in this area. First, we review the neurobiological pathophysiology of TRS, particularly the dopaminergic, glutamatergic, and GABAergic pathways. Next, the limitations of existing and promising treatments are presented. Specifically, this article focuses on the therapeutic potential of neuromodulation, including electroconvulsive therapy, repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. Finally, we propose multivariate analyses that integrate various perspectives of the pathogenesis, such as dopaminergic dysfunction and excitatory/inhibitory imbalance, thereby elucidating the heterogeneity of TRS that could not be obtained by conventional statistics. These analyses can in turn lead to a precision medicine approach with closed-loop neuromodulation targeting the detected pathophysiology of TRS.


Asunto(s)
Antipsicóticos , Clozapina , Esquizofrenia , Estimulación Transcraneal de Corriente Directa , Antipsicóticos/uso terapéutico , Clozapina/uso terapéutico , Humanos , Esquizofrenia Resistente al Tratamiento
12.
J Psychiatry Neurosci ; 47(1): E1-E10, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35027443

RESUMEN

BACKGROUND: Abnormalities in the anterior cingulate cortex (ACC) are thought to play an important role in the pathophysiology of schizophrenia. Given regional variations in ACC structure, the present study aimed to examine ACC structural subdivisions and their relationships to treatment resistance and glutamatergic levels in schizophrenia. METHODS: This study included 100 patients with schizophrenia and 52 healthy controls from 2 cohorts. We applied non-negative matrix factorization to identify accurate and stable spatial components of ACC structure. Between groups, we compared ACC structural indices in each spatial component based on treatment resistance or response and tested relationships with ACC glutamate + glutamine levels. RESULTS: We detected reductions in cortical thickness and increases in mean diffusivity in the spatial components on the surface of the cingulate sulcus, especially in patients with treatment-resistant and clozapine-resistant schizophrenia. Notably, mean diffusivity in these components was higher in patients who did not respond to clozapine compared to those who did. Furthermore, these ACC structural alterations were related to elevated ACC glutamate + glutamine levels but not related to symptomatology or antipsychotic dose. LIMITATIONS: Sample sizes, cross-sectional findings and mixed antipsychotic status were limitations of this study. CONCLUSION: This study identified reproducible abnormalities in ACC structures in patients with treatment-resistant and clozapine-resistant schizophrenia. Given that these spatial components play a role in inhibitory control, the present study strengthens the notion that glutamate-related disinhibition is a common biological feature of treatment resistance in schizophrenia.


Asunto(s)
Antipsicóticos , Clozapina , Esquizofrenia , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Clozapina/farmacología , Clozapina/uso terapéutico , Estudios Transversales , Ácido Glutámico , Glutamina , Giro del Cíngulo/diagnóstico por imagen , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico
13.
Neurosci Biobehav Rev ; 132: 1205-1213, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718049

RESUMEN

Although schizophrenia is associated with increased presynaptic dopamine function in the striatum, it remains unclear if neuromelanin levels, which are thought to serve as a biomarker for midbrain dopamine neuron function, are increased in patients with schizophrenia. We conducted a systematic review and meta-analysis of magnetic resonance imaging (MRI) and postmortem studies comparing neuromelanin (NM) levels between patients with schizophrenia and healthy controls (HCs). Standard mean differences were calculated to assess group differences in NM accumulation levels between patients with schizophrenia and HCs. This study included 7 articles in total. Five studies employed NM-sensitive MRI (NM-MRI) and two were postmortem brain studies. The patient group (n = 163) showed higher NM levels in the substantia nigra (SN) than HCs (n = 228) in both the analysis of the seven studies and the subgroup analysis of the 5 NM-MRI studies. This analysis suggest increased NM levels in the SN may be a potential biomarker for stratifying schizophrenia, warranting further research that accounts for the heterogeneity of this disorder.


Asunto(s)
Esquizofrenia , Humanos , Imagen por Resonancia Magnética/métodos , Melaninas , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/patología
14.
Mol Psychiatry ; 27(1): 744-757, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34584230

RESUMEN

BACKGROUND: The glutamate (Glu) and gamma aminobutyric acid (GABA) hypotheses of schizophrenia were proposed in the 1980s. However, current findings on those metabolite levels in schizophrenia have been inconsistent, and the relationship between their abnormalities and the pathophysiology of schizophrenia remains unclear. To summarize the nature of the alterations of glutamatergic and GABAergic systems in schizophrenia, we conducted meta-analyses of proton magnetic resonance spectroscopy (1H-MRS) studies examining these metabolite levels. METHODS: A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies that compared four metabolite levels (Glu, glutamine [Gln], Glx [Glu+Gln], and GABA), as measured by 1H-MRS, between individuals at high risk for psychosis, patients with first-episode psychosis, or patients with schizophrenia and healthy controls (HC) were included. A random-effects model was used to calculate the effect sizes for group differences in these metabolite levels of 18 regions of interest between the whole group or schizophrenia group and HC. Subgroup analysis and meta-regression were performed based on the status of antipsychotic treatment, illness stage, treatment resistance, and magnetic field strength. RESULTS: One-hundred-thirty-four studies met the eligibility criteria, totaling 7993 participants with SZ-spectrum disorders and 8744 HC. 14 out of 18 ROIs had enough numbers of studies to examine the group difference in the metabolite levels. In the whole group, Glx levels in the basal ganglia (g = 0.32; 95% CIs: 0.18-0.45) were elevated. Subgroup analyses showed elevated Glx levels in the hippocampus (g = 0.47; 95% CIs: 0.21-0.73) and dorsolateral prefrontal cortex (g = 0.25; 95% CIs: 0.05-0.44) in unmedicated patients than HC. GABA levels in the MCC were decreased in the first-episode psychosis group compared with HC (g = -0.40; 95% CIs: -0.62 to -0.17). Treatment-resistant schizophrenia (TRS) group had elevated Glx and Glu levels in the MCC (Glx: g = 0.7; 95% CIs: 0.38-1.01; Glu: g = 0.63; 95% CIs: 0.31-0.94) while MCC Glu levels were decreased in the patient group except TRS (g = -0.17; 95% CIs: -0.33 to -0.01). CONCLUSIONS: Increased glutamatergic metabolite levels and reduced GABA levels indicate that the disruption of excitatory/inhibitory balance may be related to the pathophysiology of schizophrenia-spectrum disorders.


Asunto(s)
Esquizofrenia , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Espectroscopía de Protones por Resonancia Magnética/métodos , Esquizofrenia/metabolismo , Ácido gamma-Aminobutírico/metabolismo
15.
Schizophr Res ; 243: 268-275, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-32448678

RESUMEN

Despite previous neuroimaging studies demonstrating morphological abnormalities of the thalamus and other subcortical structures in patients with schizophrenia, the potential role of the thalamus and its subdivisions in the pathophysiology of this illness remains elusive. It is also unclear whether similar changes of these structures occur in individuals at high risk for psychosis. In this study, magnetic resonance imaging was employed with the Multiple Automatically Generated Templates (MAGeT) brain segmentation algorithm to determine volumes of the thalamic subdivisions, the striatum (caudate, putamen, and nucleus accumbens), and the globus pallidus in 62 patients with schizophrenia, 38 individuals with an at-risk mental state (ARMS) [4 of whom (10.5%) subsequently developed schizophrenia], and 61 healthy subjects. Cognitive function of the patients was assessed by using the Brief Assessment of Cognition in Schizophrenia (BACS) and the Schizophrenia Cognition Rating Scale (SCoRS). Thalamic volume (particularly the medial dorsal and ventral lateral nuclei) was smaller in the schizophrenia group than the ARMS and control groups, while there were no differences for the striatum and globus pallidus. In the schizophrenia group, the reduction of thalamic ventral lateral nucleus volume was significantly associated with lower BACS score. The pallidal volume was positively correlated with the dose of antipsychotic treatment in the schizophrenia group. These results suggest that patients with schizophrenia, but not those with ARMS, exhibit volume reduction in specific thalamic subdivisions, which may underlie core clinical features of this illness.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Globo Pálido/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/patología , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Tálamo/diagnóstico por imagen , Tálamo/patología
16.
Neuroimage Clin ; 32: 102852, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34638035

RESUMEN

BACKGROUND: One-third of patients with schizophrenia are treatment-resistant to non-clozapine antipsychotics (TRS), while the rest respond (NTRS). Examining whether TRS and NTRS represent different pathophysiologies is an important step toward precision medicine. METHODS: Focusing on cortical thickness (CT), we analyzed international multi-site cross-sectional datasets of magnetic resonance imaging comprising 110 patients with schizophrenia (NTRS = 46, TRS = 64) and 52 healthy controls (HCs). We utilized a logistic regression with L1-norm regularization to find brain regions related to either NTRS or TRS. We conducted nested 10-fold cross-validation and computed the accuracy and area under the curve (AUC). Then, we applied the NTRS classifier to patients with TRS, and vice versa. RESULTS: Patients with NTRS and TRS were classified from HCs with 65% and 78% accuracies and with the AUC of 0.69 and 0.85 (p = 0.014 and < 0.001, corrected), respectively. The left planum temporale (PT) and left anterior insula/inferior frontal gyrus (IFG) contributed to both NTRS and TRS classifiers. The left supramarginal gyrus only contributed to NTRS and right superior temporal sulcus and right lateral orbitofrontal cortex only to the TRS. The NTRS classifiers successfully distinguished those with TRS from HCs with the AUC of 0.78 (p < 0.001), while the TRS classifiers classified those with NTRS from HCs with the AUC of 0.69 (p = 0.015). CONCLUSION: Both NTRS and TRS could be distinguished from HCs on the basis of CT. The CT pathological basis of NTRS and TRS has commonalities, and TRS presents unique CT features.


Asunto(s)
Antipsicóticos , Esquizofrenia , Antipsicóticos/uso terapéutico , Encéfalo/diagnóstico por imagen , Estudios Transversales , Humanos , Imagen por Resonancia Magnética , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico
17.
J Psychiatr Res ; 142: 89-100, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34330025

RESUMEN

BACKGROUND: Resilience is a crucial factor preventing the onset of mental illness and contributing to the well-being and healthy longevity, whose neural bases are not fully elucidated in older people. The present study aimed to identify the cortical thickness associating with resilience in older adults. METHODS: This is a part of the cross-sectional Arakawa geriatric cohort study for people aged 65 years or older, consisting of 1001 individuals. A Self-Reported Resilience Scale (RS), neuropsychological batteries, face-to-face interviews for diagnosis, and a three-dimensional T1-weighted magnetic resonance imaging were conducted. Cortical thickness was computed by the FreeSurfer. The relationships among cortical thickness, total RS score, and clinico-demographic data were investigated using univariate and multivariable regression analyses. RESULTS: The total RS score was correlated with age, education, and scores of the Mini-Mental State Examination (MMSE) and Geriatric Depression Scale (GDS) in univariate analyses. The total RS score was associated with cortical thicknesses in the left posterior cingulate (ß [95 % CI of B] = 0.07 [0.16-14.84]) and the left temporal pole (ß [95 % CI of B] = 0.08 [0.63-9.93]) after adjusting sex, age, imaging acquisition site, education, MMSE and GDS scores, hypertension, hyperlipidemia, diabetes mellitus, Barthel index, BMI, and living situation in multivariable regression analyses. CONCLUSION: The present analyses suggest that the resilience capacity may be related to the cortical thickness in the posterior cingulate and temporal cortices in older adults. Our findings warrant further longitudinal studies to confirm the causal relationship between stress events, resilience, and brain structures.


Asunto(s)
Corteza Cerebral , Giro del Cíngulo , Anciano , Corteza Cerebral/diagnóstico por imagen , Estudios de Cohortes , Estudios Transversales , Giro del Cíngulo/diagnóstico por imagen , Humanos , Japón , Imagen por Resonancia Magnética , Lóbulo Temporal/diagnóstico por imagen
18.
Neurosci Biobehav Rev ; 121: 47-59, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33307047

RESUMEN

Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological tool that enables the investigation of cortical excitability in the human brain. Paired-pulse TMS paradigms include short- and long-interval intracortical inhibition (SICI/LICI), intracortical facilitation (ICF), and short-latency afferent inhibition (SAI), which can assess neurophysiological functions of GABAergic, glutamatergic, and cholinergic neural circuits, respectively. We conducted the first systematic review and meta-analysis to compare these TMS indices among patients with AD, mild cognitive impairment (MCI), and healthy controls (HC). Our meta-analyses indicated that RMT, SAI, SICI, and LICI were significantly lower in patients with AD, while ICF did not show a difference in patients with AD compared with HC. In patients with MCI, RMT and SAI were significantly lower than in HC. In conclusion, motor cortical excitability was increased, while cholinergic function was decreased in AD and MCI in comparison with HC and patients with AD had decreased GABAergic and glutamatergic functions compared with HC. Our results warrant further studies to differentiate AD, MCI, and HC, employing multimodal TMS neurophysiology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Biomarcadores , Potenciales Evocados Motores , Humanos , Inhibición Neural , Neurofisiología , Estimulación Magnética Transcraneal
19.
Psychol Med ; 51(1): 1-10, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33267920

RESUMEN

Major depressive disorder (MDD) is a mental illness with high socio-economic burden, but its pathophysiology has not been fully elucidated. Recently, the cortical excitatory and inhibitory imbalance hypothesis and neuroplasticity hypothesis have been proposed for MDD. Although several studies have examined the neurophysiological profiles in MDD using transcranial magnetic stimulation (TMS), a meta-analysis of TMS neurophysiology has not been performed. The objective of this study was to compare TMS-electromyogram (TMS-EMG) findings between patients with MDD and healthy controls (HCs). To this end, we examined whether patients with MDD have lower short-interval cortical inhibition (SICI) which reflects gamma-aminobutyric acid (GABA)A receptor-mediated activity, lower cortical silent period (CSP) which represents GABAB receptor-mediated activity, higher intracortical facilitation (ICF) which reflects glutamate N-methyl-D-aspartate receptor-mediated activity, and the lower result of paired associative stimulation (PAS) paradigm which shows the level of neuroplasticity in comparison with HC. Further, we explored the effect of clinical and demographic factors that may influence TMS neurophysiological indices. We first searched and identified research articles that conducted single- or paired-pulse TMS-EMG on patients with MDD and HC. Subsequently, we extracted the data from the included studies and meta-analyzed the data with the comprehensive meta-analysis software. Patients with MDD were associated with lower SICI, lower CSP, potentially higher ICF, and lower PAS compared with HC. Our results confirmed the proposed hypotheses, suggesting the usefulness of TMS neurophysiology as potential diagnostic markers of MDD.


Asunto(s)
Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/terapia , Estimulación Magnética Transcraneal/métodos , Humanos , Neurofisiología
20.
J Pers Med ; 10(3)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823914

RESUMEN

Background: The neural basis of treatment-resistant schizophrenia (TRS) remains unclear. Previous neuroimaging studies suggest that aberrant connectivity between the anterior cingulate cortex (ACC) and default mode network (DMN) may play a key role in the pathophysiology of TRS. Thus, we aimed to examine the connectivity between the ACC and posterior cingulate cortex (PCC), a hub of the DMN, computing isolated effective coherence (iCoh), which represents causal effective connectivity. Methods: Resting-state electroencephalogram with 19 channels was acquired from seventeen patients with TRS and thirty patients with non-TRS (nTRS). The iCoh values between the PCC and ACC were calculated using sLORETA software. We conducted four-way analyses of variance (ANOVAs) for iCoh values with group as a between-subject factor and frequency, directionality, and laterality as within-subject factors and post-hoc independent t-tests. Results: The ANOVA and post-hoc t-tests for the iCoh ratio of directionality from PCC to ACC showed significant findings in delta (t45 = 7.659, p = 0.008) and theta (t45 = 8.066, p = 0.007) bands in the left side (TRS < nTRS). Conclusion: Left delta and theta PCC and ACC iCoh ratio may represent a neurophysiological basis of TRS. Given the preliminary nature of this study, these results warrant further study to confirm the importance of iCoh as a clinical indicator for treatment-resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...