Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Gastroenterol ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38305278

RESUMEN

INTRODUCTION: Both artificial intelligence (AI) and distal attachment devices have been shown to improve adenoma detection rate and reduce miss rate during colonoscopy. We studied the combined effect of Endocuff and AI on enhancing detection rates of various colonic lesions. METHODS: This was a 3-arm prospective randomized colonoscopy study involving patients aged 40 years or older. Participants were randomly assigned in a 1:1:1 ratio to undergo Endocuff with AI, AI alone, or standard high-definition (HD) colonoscopy. The primary outcome was adenoma detection rate (ADR) between the Endocuff-AI and AI groups while secondary outcomes included detection rates of polyp (PDR), sessile serrated lesion (sessile detection rate [SDR]), and advanced adenoma (advanced adenoma detection rate) between the 2 groups. RESULTS: A total of 682 patients were included (mean age 65.4 years, 52.3% male), with 53.7% undergoing diagnostic colonoscopy. The ADR for the Endocuff-AI, AI, and HD groups was 58.7%, 53.8%, and 46.3%, respectively, while the corresponding PDR was 77.0%, 74.0%, and 61.2%. A significant increase in ADR, PDR, and SDR was observed between the Endocuff-AI and AI groups (ADR difference: 4.9%, 95% CI: 1.4%-8.2%, P = 0.03; PDR difference: 3.0%, 95% CI: 0.4%-5.8%, P = 0.04; SDR difference: 6.4%, 95% CI: 3.4%-9.7%, P < 0.01). Both Endocuff-AI and AI groups had a higher ADR, PDR, SDR, and advanced adenoma detection rate than the HD group (all P < 0.01). DISCUSSION: Endocuff in combination with AI further improves various colonic lesion detection rates when compared with AI alone.

2.
Gastrointest Endosc ; 98(5): 813-821.e3, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37307902

RESUMEN

BACKGROUND AND AIMS: Blue-light imaging (BLI) is a new image-enhanced endoscopy with a wavelength filter similar to narrow-band imaging (NBI). We compared the 2 with white-light imaging (WLI) on proximal colonic lesion detection and miss rates. METHODS: In this 3-arm prospective randomized study with tandem examination of the proximal colon, we enrolled patients aged ≥40 years. Eligible patients were randomized in 1:1:1 ratio to receive BLI, NBI, or WLI during the first withdrawal from the proximal colon. The second withdrawal was performed using WLI in all patients. Primary outcomes were proximal polyp (pPDRs) and adenoma (pADRs) detection rates. Secondary outcomes were miss rates of proximal lesions found on tandem examination. RESULTS: Of 901 patients included (mean age, 64.7 years; 52.9% men), 48.1% underwent colonoscopy for screening or surveillance. The corresponding pPDRs of the BLI, NBI, and WLI groups were 45.8%, 41.6, and 36.6%, whereas the corresponding pADRs were 36.6%, 33.8%, and 28.3%. There was a significant difference in pPDR and pADR between BLI and WLI groups (difference, 9.2% [95% confidence interval {CI}, 3.3-16.9] and 8.3% [95% CI, 2.7-15.9]) and between NBI and WLI groups (difference, 5.0% [95% CI, 1.4-12.9] and 5.6% [95% CI, 2.1-13.3]). Proximal adenoma miss rates were significantly lower with BLI (19.4%) than with WLI (27.4%; difference, -8.0%; 95% CI, -15.8 to -.1) but not between NBI (27.2%) and WLI. CONCLUSIONS: Both BLI and NBI were superior to WLI on detecting proximal colonic lesions, but only BLI had lower proximal adenoma miss rates than WLI. (Clinical trial registration number: NCT03696992.).

3.
BMC Cancer ; 19(1): 789, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395065

RESUMEN

BACKGROUND: Hepatitis B virus (HBV) is the major risk factor for hepatocellular carcinoma (HCC). The molecular mechanisms underlying HBV-associated HCC pathogenesis is still unclear. Genetic alterations in cancer-related genes have been linked to many human cancers. Here, we aimed to explore genetic alterations in selected cancer-related genes in patients with HBV-associated HCC. METHODS: Targeted sequencing was used to analyze six cancer-related genes (PIK3CA, TP53, FAT4, IRF2, HNF4α and ARID1A) in eight pairs of HBV-associated HCC tumors and their adjacent non-tumor tissues. Sanger sequencing, quantitative PCR, Western-blotting and RNAi-mediated gene knockdown were used to further validate findings. RESULTS: Targeted sequencing revealed thirteen non-synonymous mutations, of which 9 (69%) were found in FAT4 and 4 (31%) were found in TP53 genes. Non-synonymous mutations were not found in PIK3CA, IRF2, HNF4α and ARID1A. Among these 13 non-synonymous mutations, 12 (8 in FAT4 and 4 in TP53) were predicted to have deleterious effect on protein function by in silico analysis. For TP53, Y220S, R249S and P250R non-synonymous mutations were solely identified in tumor tissues. Further expression profiling of FAT4 and TP53 on twenty-eight pairs of HCC tumor and non-tumor tissues confirmed significant downregulation of both genes in HCC tumors compared with their non-tumor counterparts (P < 0.001 and P < 0.01, respectively). Functional analysis using RNAi-mediated knockdown of FAT4 revealed an increased cancer cell growth and proliferation, suggesting the putative tumor suppressor role of FAT4 in HCC. CONCLUSIONS: This study highlights the importance of FAT4 and TP53 in HCC pathogenesis and identifies new genetic variants that may have potentials for development of precise therapy for HCC.


Asunto(s)
Biomarcadores de Tumor , Cadherinas/genética , Carcinoma Hepatocelular/etiología , Hepatitis B/complicaciones , Neoplasias Hepáticas/etiología , Mutación , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Alelos , Línea Celular Tumoral , Análisis Mutacional de ADN , Perfilación de la Expresión Génica , Frecuencia de los Genes , Genómica/métodos , Hepatitis B/virología , Virus de la Hepatitis B , Humanos , Mutación INDEL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...