Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 63(14): 3785-3793, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856341

RESUMEN

In this paper, we have developed a 2D optical scanning module comprising cascaded 3D-printed one-axis rotating mirrors with large areas (30×30m m 2 for the X-direction scan and 60×25m m 2 for the Y-direction scan). Each mirror device contains a square or rectangular silicon substrate coated with aluminum, serving as the mirror. A 3D-printed structure, including the mirror frame (with four embedded mini permanent magnets on the backside), torsion springs, and base, is combined with the mirror; two electromagnets are situated under the mirror as the actuation mechanism. We apply DC voltage to the electromagnets to create magnetic force. The electromagnets can interact with the permanent magnets to make the mirror rotate. The X scan of the 2D scanning module can achieve a static optical scan angle of ∼11.8deg at the -X corners, and the corresponding Y-scan angle is ∼4.5deg, both with 12 VDC. Moreover, we have observed a fan-shaped distortion, a phenomenon not thoroughly studied previously for combining two single-axis scan mirrors. Therefore, we also perform a simulation to establish and demonstrate a correlation between the simulation prediction and experimental results. The 2D scanning module can be a low-cost alternative to the expensive conventional galvanometer scanners, and it can be used to upgrade a rangefinder to a simplified LiDAR.

2.
ACS Appl Mater Interfaces ; 16(9): 11489-11496, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38393972

RESUMEN

The freedom from efficiency droop motivates monochromatic lasers to progress in general lighting applications due to the demand for more efficient and sustainable light sources. Still, a white light based on monochromatic lasers with high lighting quality, such as a high color rendering ability, an angle-independent output, and a speckle-free illumination, has not yet been fabricated nor demonstrated. Random lasers, with the special mechanism caused by multiple scattering, the angle-free emission, and the uncomplicated fabrication processes, inspire us to investigate the feasibility of utilizing them in general lighting. In this work, a white random laser with a high color rendering index (CRI) value, regardless of pumping energy and observing direction, was performed and discussed. We also investigated the stability of white RL as its CIE chromaticity coordinates exhibit negligible differences with increasing pump energy density, retaining its high-CRI measurement. Also, it exhibits angle-independent emission while having a high color rendering ability. After passing through a scattering film, it generated no speckles compared to the conventional laser. We demonstrated the advances in white laser illumination, showing that a white random laser is promising to be applied for high-brightness illumination, biological-friendly lighting, accurate color selections, and medical sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA