Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 730: 109426, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36202216

RESUMEN

Selenophosphate synthetase (SEPHS) was originally discovered in prokaryotes as an enzyme that catalyzes selenophosphate synthesis using inorganic selenium and ATP as substrates. However, in contrast to prokaryotes, two paralogs, SEPHS1 and SEPHS2, occur in many eukaryotes. Prokaryotic SEPHS, also known as SelD, contains either cysteine (Cys) or selenocysteine (Sec) in the catalytic domain. In eukaryotes, only SEPHS2 carries out selenophosphate synthesis and contains Sec at the active site. However, SEPHS1 contains amino acids other than Sec or Cys at the catalytic position. Phylogenetic analysis of SEPHSs reveals that the ancestral SEPHS contains both selenophosphate synthesis and another unknown activity, and that SEPHS1 lost the selenophosphate synthesis activity. The three-dimensional structure of SEPHS1 suggests that its homodimer is unable to form selenophosphate, but retains ATPase activity to produce ADP and inorganic phosphate. The most prominent function of SEPHS1 is that it is implicated in the regulation of cellular redox homeostasis. Deficiency of SEPHS1 leads to the disturbance in the expression of genes involved in redox homeostasis. Different types of reactive oxygen species (ROS) are accumulated in response to SEPHS deficiency depending on cell or tissue types. The accumulation of ROS causes pleiotropic effects such as growth retardation, apoptosis, DNA damage, and embryonic lethality. SEPHS1 deficiency in mouse embryos affects retinoic signaling and other related signaling pathways depending on the embryonal stage until the embryo dies at E11.5. Dysregulated SEPHS1 is associated with the pathogenesis of various diseases including cancer, Crohn's disease, and osteoarthritis.


Asunto(s)
Selenio , Selenocisteína , Animales , Ratones , Adenosina Difosfato , Adenosina Trifosfatasas , Adenosina Trifosfato/metabolismo , Cisteína , Fosfatos , Filogenia , Especies Reactivas de Oxígeno
2.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35054992

RESUMEN

The selenium field expanded at a rapid rate for about 45 years, from the mid-1970's until about 2015 (see [...].


Asunto(s)
Susceptibilidad a Enfermedades , Evaluación del Impacto en la Salud , Homeostasis , Selenio/metabolismo , Selenoproteínas/metabolismo , Humanos , Selenio/efectos adversos
3.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638991

RESUMEN

Selenoproteins play important roles in many cellular functions and biochemical pathways in mammals. Our previous study showed that the deficiency of the 15 kDa selenoprotein (Selenof) significantly reduced the formation of aberrant crypt foci (ACF) in a mouse model of azoxymethane (AOM)-induced colon carcinogenesis. The objective of this study was to examine the effects of Selenof on inflammatory tumorigenesis, and whether dietary selenium modified these effects. For 20 weeks post-weaning, Selenof-knockout (KO) mice and littermate controls were fed diets that were either deficient, adequate or high in sodium selenite. Colon tumors were induced with AOM and dextran sulfate sodium. Surprisingly, KO mice had drastically fewer ACF but developed a similar number of tumors as their littermate controls. Expression of genes important in inflammatory colorectal cancer and those relevant to epithelial barrier function was assessed, in addition to structural differences via tissue histology. Our findings point to Selenof's potential role in intestinal barrier integrity and structural changes in glandular and mucin-producing goblet cells in the mucosa and submucosa, which may determine the type of tumor developing.


Asunto(s)
Focos de Criptas Aberrantes/dietoterapia , Focos de Criptas Aberrantes/metabolismo , Carcinogénesis/efectos de los fármacos , Neoplasias del Colon/sangre , Neoplasias del Colon/dietoterapia , Mucosa Intestinal/metabolismo , Selenoproteínas/metabolismo , Selenito de Sodio/administración & dosificación , Oligoelementos/administración & dosificación , Focos de Criptas Aberrantes/genética , Animales , Azoximetano/efectos adversos , Carcinogénesis/genética , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/genética , Citocinas/sangre , Sulfato de Dextran/efectos adversos , Dieta/métodos , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Selenoproteínas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
4.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008430

RESUMEN

Selenium is a fascinating element that has a long history, most of which documents it as a deleterious element to health. In more recent years, selenium has been found to be an essential element in the diet of humans, all other mammals, and many other life forms. It has many health benefits that include, for example, roles in preventing heart disease and certain forms of cancer, slowing AIDS progression in HIV patients, supporting male reproduction, inhibiting viral expression, and boosting the immune system, and it also plays essential roles in mammalian development. Elucidating the molecular biology of selenium over the past 40 years generated an entirely new field of science which encompassed the many novel features of selenium. These features were (1) how this element makes its way into protein as the 21st amino acid in the genetic code, selenocysteine (Sec); (2) the vast amount of machinery dedicated to synthesizing Sec uniquely on its tRNA; (3) the incorporation of Sec into protein; and (4) the roles of the resulting Sec-containing proteins (selenoproteins) in health and development. One of the research areas receiving the most attention regarding selenium in health has been its role in cancer prevention, but further research has also exposed the role of this element as a facilitator of various maladies, including cancer.


Asunto(s)
Selenio/administración & dosificación , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Animales , Dieta , Código Genético , Salud , Humanos , ARN de Transferencia Aminoácido-Específico/metabolismo
5.
Cell Rep ; 23(5): 1387-1398, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29719252

RESUMEN

Selenof (15-kDa selenoprotein; Sep15) is an endoplasmic reticulum (ER)-resident thioredoxin-like oxidoreductase that occurs in a complex with UDP-glucose:glycoprotein glucosyltransferase. We found that Selenof deficiency in mice leads to elevated levels of non-functional circulating plasma immunoglobulins and increased secretion of IgM during in vitro splenic B cell differentiation. However, Selenof knockout animals show neither enhanced bacterial killing capacity nor antigen-induced systemic IgM activity, suggesting that excess immunoglobulins are not functional. In addition, ER-to-Golgi transport of a target glycoprotein was delayed in Selenof knockout embryonic fibroblasts, and proteomic analyses revealed that Selenof deficiency is primarily associated with antigen presentation and ER-to-Golgi transport. Together, the data suggest that Selenof functions as a gatekeeper of immunoglobulins and, likely, other client proteins that exit the ER, thereby supporting redox quality control of these proteins.


Asunto(s)
Presentación de Antígeno , Linfocitos B/inmunología , Retículo Endoplásmico/inmunología , Aparato de Golgi/inmunología , Inmunoglobulina M/inmunología , Selenoproteínas/inmunología , Animales , Linfocitos B/citología , Línea Celular , Retículo Endoplásmico/genética , Fibroblastos/citología , Fibroblastos/inmunología , Aparato de Golgi/genética , Inmunoglobulina M/genética , Ratones , Ratones Noqueados , Selenoproteínas/genética , Bazo/citología , Bazo/inmunología
6.
Free Radic Biol Med ; 127: 14-25, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29793041

RESUMEN

Selenocysteine-containing proteins (selenoproteins) have been implicated in the regulation of various cell signaling pathways, many of which are linked to colorectal malignancies. In this in-depth excurse into the selenoprotein literature, we review possible roles for human selenoproteins in colorectal cancer, focusing on the typical hallmarks of cancer cells and their tumor-enabling characteristics. Human genome studies of single nucleotide polymorphisms in various genes coding for selenoproteins have revealed potential involvement of glutathione peroxidases, thioredoxin reductases, and other proteins. Cell culture studies with targeted down-regulation of selenoproteins and studies utilizing knockout/transgenic animal models have helped elucidate the potential roles of individual selenoproteins in this malignancy. Those selenoproteins, for which strong links to development or progression of colorectal cancer have been described, may be potential future targets for clinical interventions.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias Colorrectales/metabolismo , Selenoproteínas/metabolismo , Animales , Humanos , Oxidación-Reducción
7.
Methods Mol Biol ; 1661: 43-60, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28917036

RESUMEN

The selenocysteine (Sec) tRNA[Ser]Sec population consists of two isoforms that differ from each other by a single 2'-O-methylribosyl moiety at position 34 (Um34). These two isoforms, which are encoded in a single gene, Trsp, and modified posttranscriptionally, are involved individually in the synthesis of two subclasses of selenoproteins, designated housekeeping and stress-related selenoproteins. Techniques used in obtaining these isoforms for their characterization include extraction of RNA from mammalian cells and tissues, purifying the tRNA[Ser]Sec population by one or more procedures, and finally resolving the two isoforms from each other. Since some of the older techniques for isolating tRNA[Ser]Sec and resolving the isoforms are used in only a few laboratories, these procedures will be discussed briefly and references provided for more detailed information, while the more recently developed procedures are discussed in detail. In addition, a novel technique that was developed in sequencing tRNA[Ser]Sec for identifying their occurrence in other organisms is also presented.


Asunto(s)
ARN de Transferencia Aminoácido-Específico/genética , Selenoproteínas/genética , Animales , Northern Blotting , Cromatografía de Afinidad , Cromatografía de Fase Inversa , Humanos , Marcaje Isotópico , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN de Transferencia Aminoácido-Específico/química , Radioisótopos de Selenio , Selenoproteínas/química , Selenoproteínas/aislamiento & purificación , Análisis de Secuencia de ARN
8.
J Biol Chem ; 291(46): 24036-24040, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27645994

RESUMEN

The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.


Asunto(s)
Selenoproteínas/clasificación , Selenoproteínas/genética , Humanos , Terminología como Asunto
9.
Redox Biol ; 9: 22-31, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27262435

RESUMEN

The selenoenzyme glutathione peroxidase 4 (Gpx4) is an essential mammalian glutathione peroxidase, which protects cells against detrimental lipid peroxidation and governs a novel form of regulated necrotic cell death, called ferroptosis. To study the relevance of Gpx4 and of another vitally important selenoprotein, cytosolic thioredoxin reductase (Txnrd1), for liver function, mice with conditional deletion of Gpx4 in hepatocytes were studied, along with those lacking Txnrd1 and selenocysteine (Sec) tRNA (Trsp) in hepatocytes. Unlike Txnrd1- and Trsp-deficient mice, Gpx4-/- mice died shortly after birth and presented extensive hepatocyte degeneration. Similar to Txnrd1-deficient livers, Gpx4-/- livers manifested upregulation of nuclear factor (erythroid-derived)-like 2 (Nrf2) response genes. Remarkably, Gpx4-/- pups born from mothers fed a vitamin E-enriched diet survived, yet this protection was reversible as subsequent vitamin E deprivation caused death of Gpx4-deficient mice ~4 weeks thereafter. Abrogation of selenoprotein expression in Gpx4-/- mice did not result in viable mice, indicating that the combined deficiency aggravated the loss of Gpx4 in liver. By contrast, combined Trsp/Txnrd1-deficient mice were born, but had significantly shorter lifespans than either single knockout, suggesting that Txnrd1 plays an important role in supporting liver function of mice lacking Trsp. In sum our study demonstrates that the ferroptosis regulator Gpx4 is critical for hepatocyte survival and proper liver function, and that vitamin E can compensate for its loss by protecting cells against deleterious lipid peroxidation.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Hepatocitos/metabolismo , Regeneración Hepática , Hígado/metabolismo , Animales , Supervivencia Celular/genética , Femenino , Regulación de la Expresión Génica , Genotipo , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Glutatión Peroxidasa/genética , Peroxidación de Lípido , Hígado/patología , Regeneración Hepática/genética , Masculino , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Necrosis/genética , Necrosis/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Vitamina E/metabolismo
10.
Biochem J ; 473(14): 2141-54, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27208177

RESUMEN

Selenophosphate synthetase (SPS) was initially detected in bacteria and was shown to synthesize selenophosphate, the active selenium donor. However, mammals have two SPS paralogues, which are designated SPS1 and SPS2. Although it is known that SPS2 catalyses the synthesis of selenophosphate, the function of SPS1 remains largely unclear. To examine the role of SPS1 in mammals, we generated a Sps1-knockout mouse and found that systemic SPS1 deficiency led to embryos that were clearly underdeveloped by embryonic day (E)8.5 and virtually resorbed by E14.5. The knockout of Sps1 in the liver preserved viability, but significantly affected the expression of a large number of mRNAs involved in cancer, embryonic development and the glutathione system. Particularly notable was the extreme deficiency of glutaredoxin 1 (GLRX1) and glutathione transferase Omega 1 (GSTO1). To assess these phenotypes at the cellular level, we targeted the removal of SPS1 in F9 cells, a mouse embryonal carcinoma (EC) cell line, which affected the glutathione system proteins and accordingly led to the accumulation of hydrogen peroxide in the cell. Furthermore, we found that several malignant characteristics of SPS1-deficient F9 cells were reversed, suggesting that SPS1 played a role in supporting and/or sustaining cancer. In addition, the overexpression of mouse or human GLRX1 led to a reversal of observed increases in reactive oxygen species (ROS) in the F9 SPS1/GLRX1-deficient cells and resulted in levels that were similar to those in F9 SPS1-sufficient cells. The results suggested that SPS1 is an essential mammalian enzyme with roles in regulating redox homoeostasis and controlling cell growth.


Asunto(s)
Fosfotransferasas/metabolismo , Animales , Línea Celular , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Homeostasis/genética , Homeostasis/fisiología , Humanos , Hígado/metabolismo , Ratones , Ratones Noqueados , Oxidación-Reducción , Fosfotransferasas/genética , Fosfato de Piridoxal/metabolismo
11.
Cancers (Basel) ; 7(4): 2262-76, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26569310

RESUMEN

A common characteristic of many cancer cells is that they suffer from oxidative stress. They, therefore, require effective redox regulatory systems to combat the higher levels of reactive oxygen species that accompany accelerated growth compared to the normal cells of origin. An elevated dependence on these systems in cancers suggests that targeting these systems may provide an avenue for retarding the malignancy process. Herein, we examined the redox regulatory systems in human liver and lung cancers by comparing human lung adenocarcinoma and liver carcinoma to their respective surrounding normal tissues. Significant differences were found in the two major redox systems, the thioredoxin and glutathione systems. Thioredoxin reductase 1 levels were elevated in both malignancies, but thioredoxin was highly upregulated in lung tumor and only slightly upregulated in liver tumor, while peroxiredoxin 1 was highly elevated in lung tumor, but downregulated in liver tumor. There were also major differences within the glutathione system between the malignancies and their normal tissues. The data suggest a greater dependence of liver on either the thioredoxin or glutathione system to drive the malignancy, while lung cancer appeared to depend primarily on the thioredoxin system.

12.
Nutrients ; 7(8): 6529-49, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26258789

RESUMEN

Selenium is an essential element that is required to support a number of cellular functions and biochemical pathways. The objective of this study was to examine the effects of reduced dietary selenium levels on gene expression to assess changes in expression of non-selenoprotein genes that may contribute to the physiological consequences of selenium deficiency. Mice were fed diets that were either deficient in selenium or supplemented with selenium in the form of sodium selenite for six weeks. Differences in liver mRNA expression and translation were measured using a combination of ribosome profiling, RNA-Seq, microarrays, and qPCR. Expression levels and translation of mRNAs encoding stress-related selenoproteins were shown to be up-regulated by increased selenium status, as were genes involved in inflammation and response to interferon-γ. Changes in serum cytokine levels were measured which confirmed that interferon-γ, as well as IL-6, were increased in selenium adequate mice. Finally, microarray and qPCR analysis of lung tissue demonstrated that the selenium effects on immune function are not limited to liver. These data are consistent with previous reports indicating that adequate selenium levels can support beneficial immune responses, and further identify the IL-6 and interferon-γ pathways as being responsive to dietary selenium intake.


Asunto(s)
Interferón gamma/sangre , Interleucina-6/sangre , Selenio/administración & dosificación , Selenoproteínas/metabolismo , Animales , Biología Computacional , Suplementos Dietéticos , Expresión Génica , Perfilación de la Expresión Génica , Inflamación/inmunología , Interferón gamma/inmunología , Interleucina-6/inmunología , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Selenio/sangre , Selenoproteínas/genética , Análisis de Secuencia de ARN , Selenito de Sodio/metabolismo , Regulación hacia Arriba
13.
PLoS One ; 10(4): e0124487, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25886253

RESUMEN

Selenoproteins mediate much of the cancer-preventive properties of the essential nutrient selenium, but some of these proteins have been shown to also have cancer-promoting effects. We examined the contributions of the 15kDa selenoprotein (Sep15) and thioredoxin reductase 1 (TR1) to cancer development. Targeted down-regulation of either gene inhibited anchorage-dependent and anchorage-independent growth and formation of experimental metastases of mouse colon carcinoma CT26 cells. Surprisingly, combined deficiency of Sep15 and TR1 reversed the anti-cancer effects observed with down-regulation of each single gene. We found that inflammation-related genes regulated by Stat-1, especially interferon-γ-regulated guanylate-binding proteins, were highly elevated in Sep15-deficient, but not in TR1-deficient cells. Interestingly, components of the Wnt/ß-catenin signaling pathway were up-regulated in cells lacking both TR1 and Sep15. These results suggest that Sep15 and TR1 participate in interfering regulatory pathways in colon cancer cells. Considering the variable expression levels of Sep15 and TR1 found within the human population, our results provide insights into new roles of selenoproteins in cancer.


Asunto(s)
Neoplasias del Colon/patología , Selenoproteínas/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/enzimología , Neoplasias del Colon/metabolismo , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Selenoproteínas/genética , Tiorredoxina Reductasa 1/genética
14.
Mol Cells ; 38(5): 457-65, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25728752

RESUMEN

The 15-kDa selenoprotein (Sep15) is a selenoprotein residing in the lumen of the endoplasmic reticulum (ER) and implicated in quality control of protein folding. Herein, we established an inducible RNAi cell line that targets Sep15 mRNA in Chang liver cells. RNAi-induced Sep15 deficiency led to inhibition of cell proliferation, whereas cell growth was resumed after removal of the knockdown inducer. Sep15-deficient cells were arrested at the G1 phase by upregulating p21 and p27, and these cells were also characterized by ER stress. In addition, Sep15 deficiency led to the relocation of focal adhesions to the periphery of the cell basement and to the decrease of the migratory and invasive ability. All these changes were reversible depending on Sep15 status. Rescuing the knockdown state by expressing a silent mutant Sep15 mRNA that is resistant to siRNA also reversed the phenotypic changes. Our results suggest that SEP15 plays important roles in the regulation of the G1 phase during the cell cycle as well as in cell motility in Chang liver cells, and that this selenoprotein offers a novel functional link between the cell cycle and cell motility.


Asunto(s)
Línea Celular/fisiología , Fase G1 , Selenoproteínas/deficiencia , Movimiento Celular , Proliferación Celular , Humanos , ARN Interferente Pequeño/metabolismo , Selenoproteínas/genética
15.
Biochem Biophys Res Commun ; 456(4): 884-90, 2015 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-25529450

RESUMEN

The 15-kDa selenoprotein (Sep15) has been implicated in etiology of some types of cancer. Herein, inducible RNAi cell lines were established and cell morphology and motility were analyzed. The majority of Sep15-deficient cells (>95%) formed membrane blebs in a dynamic manner. Blebbing cells transformed cell morphology from a normal flat spindle shape to a spherical morphology. In blebbing cells, actin fibers moved to the cell periphery, covering and obscuring visualization of α-tubulin. Bleb formation was suppressed by the inhibitors of Rho-associated protein kinase (ROCK), RhoA or myosin light chain (MLC), restoring blebbing cells to wild-type morphology. RhoA activation and phosphorylation of myosin phosphatase target subunit 1 was induced by Sep15 knockdown. Sep15-deficient cells were non-apoptotic, and displayed a distinct relative localization of F-actin and α-tubulin from typical apoptotic blebbing cells. Our data suggest that Sep15 in Chang liver cells regulates the pathway that antagonizes RhoA/ROCK/MLC-dependent non-apoptotic bleb formation.


Asunto(s)
Apoptosis , Estructuras de la Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Selenoproteínas/deficiencia , Transducción de Señal , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Amidas/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Estructuras de la Membrana Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Piridinas/farmacología , Selenoproteínas/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Trends Biochem Sci ; 39(3): 112-20, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24485058

RESUMEN

The many biological and biomedical effects of selenium are relatively unknown outside the selenium field. This fascinating element, initially described as a toxin, was subsequently shown to be essential for health and development. By the mid-1990s selenium emerged as one of the most promising cancer chemopreventive agents, but subsequent human clinical trials yielded contradictory results. However, basic research on selenium continued to move at a rapid pace, elucidating its many roles in health, development, and in cancer prevention and promotion. Dietary selenium acts principally through selenoproteins, most of which are oxidoreductases involved in diverse cellular functions.


Asunto(s)
Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Selenio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Humanos
17.
Nutr Cancer ; 65(7): 1014-25, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24087992

RESUMEN

Flavonoids are secondary plant products that are well represented in healthy diets because of ingestion of fruit, vegetables, herbs, and teas. Increased consumption is correlated with decreased risks of cardiovascular disease, cancer, and other chronic diseases. Certain flavonoids confer direct antioxidant protection to cells, others induce enzymes that protect cells against oxidative and other insults ("indirect antioxidants"), and others appear to be protective by both mechanisms. Hydroxylated flavones manifest substantial direct antioxidant activity but do not effectively induce cytoprotective enzymes. Methoxylated flavones that potently induce cytoprotective enzymes were evaluated to elucidate the structural prerequisites for effective chemoprotective agents: protecting healthy cells with minimal collateral toxicity. Flavones and flavanones methoxylated at the 5-position of the A-ring were among the most potent inducers of the cytoprotective NAD(P)H:quinone-oxidoreductase 1 (NQO1) in 3 different cell lines. Other flavones were equally potent inducers, but more toxic. Flavanones contain no Michael reaction center, yet some are potent inducers of NQO1, have low cytotoxicity, and inhibit LPS-stimulated iNOS activity, which suggests a redox mechanism of action rather than the Keap1/Nrf2/ARE mechanism by which so many of the classic inducers operate. Evaluation in vivo will reveal whether differential protective advantages support their possible evaluation in a cancer prevention setting.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Flavonoides/química , Flavonoides/farmacología , Animales , Benzotiazoles/metabolismo , Células CACO-2 , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quimioprevención , Humanos , Concentración 50 Inhibidora , Modelos Lineales , Lipopolisacáridos/efectos adversos , Ratones , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Oxidación-Reducción , Relación Estructura-Actividad , Ácidos Sulfónicos/metabolismo
18.
Mol Cells ; 36(2): 151-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23912593

RESUMEN

Under hypoxic conditions, cells activate a transcriptional response mainly driven by hypoxia-inducible factors (HIFs). HIF-1α stabilization and activity are known to be regulated by thioredoxin 1 (Txn1), but how the thioredoxin system regulates the hypoxic response is unknown. By examining the effects of Txn1 overexpression on HIF-1α function in HeLa, HT-29, MCF-7 and EMT6 cell lines, we found that this oxidoreductase did not stabilize HIF-1α, yet could increase its activity. These effects were dependent on the redox function of Txn1. However, Txn1 deficiency did not affect HIF-1α hypoxic-stabilization and activity, and overexpression of thioredoxin reductase 1 (TR1), the natural Txn1 reductase, had no influence on HIF-1α activity. Moreover, overexpression of Txn1 in TR1 deficient HeLa and EMT6 cells was still able to increase HIF-1α hypoxic activity. These results indicate that Txn1 is not essential for HIF-1α hypoxic stabilization or activity, that its overexpression can increase HIF-1α hypoxic activity, and that this effect is observed regardless of TR1 status. Thus, regulation of HIF-1α by the thioredoxin system depends on the specific levels of this system's major components.


Asunto(s)
Hipoxia de la Célula , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Tiorredoxina Reductasa 1/genética , Tiorredoxina Reductasa 1/metabolismo , Tiorredoxinas/metabolismo , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Células HT29 , Células HeLa , Humanos , Células MCF-7 , Ratones , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Oxidación-Reducción , Tiorredoxinas/genética
19.
J Biol Chem ; 288(21): 14709-15, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23589299

RESUMEN

Antibiotics target bacteria by interfering with essential processes such as translation, but their effects on translation in mammalian cells are less well characterized. We found that doxycycline, chloramphenicol, and Geneticin (G418) interfered with insertion of selenocysteine (Sec), which is encoded by the stop codon, UGA, into selenoproteins in murine EMT6 cells. Treatment of EMT6 cells with these antibiotics reduced enzymatic activities and Sec insertion into thioredoxin reductase 1 (TR1) and glutathione peroxidase 1 (GPx1). However, these proteins were differentially affected due to varying errors in Sec insertion at UGA. In the presence of doxycycline, chloramphenicol, or G418, the Sec-containing form of TR1 decreased, whereas the arginine-containing and truncated forms of this protein increased. We also detected antibiotic-specific misinsertion of cysteine and tryptophan. Furthermore, misinsertion of arginine in place of Sec was commonly observed in GPx1 and glutathione peroxidase 4. TR1 was the most affected and GPx1 was the least affected by these translation errors. These observations were consistent with the differential use of two Sec tRNA isoforms and their distinct roles in supporting accuracy of Sec insertion into selenoproteins. The data reveal widespread errors in inserting Sec into proteins and in dysregulation of selenoprotein expression and function upon antibiotic treatment.


Asunto(s)
Amebicidas/efectos adversos , Sustitución de Aminoácidos/efectos de los fármacos , Antibacterianos/efectos adversos , Cloranfenicol/efectos adversos , Doxiciclina/efectos adversos , Gentamicinas/efectos adversos , Selenocisteína/metabolismo , Amebicidas/farmacología , Animales , Antibacterianos/farmacología , Arginina/genética , Arginina/metabolismo , Línea Celular Tumoral , Cloranfenicol/farmacología , Doxiciclina/farmacología , Gentamicinas/farmacología , Glutatión Peroxidasa/biosíntesis , Glutatión Peroxidasa/genética , Humanos , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Selenocisteína/genética , Selenoproteínas/biosíntesis , Selenoproteínas/genética , Tiorredoxinas/biosíntesis , Tiorredoxinas/genética , Glutatión Peroxidasa GPX1
20.
PLoS One ; 7(12): e50574, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226526

RESUMEN

Evidence suggests that selenium has cancer preventive properties that are largely mediated through selenoproteins. Our previous observations demonstrated that targeted down-regulation of the 15 kDa selenoprotein (Sep15) in murine colon cancer cells resulted in the reversal of the cancer phenotype. The present study investigated the effect of Sep15 knockout in mice using a chemically-induced colon cancer model. Homozygous Sep15 knockout mice, and wild type littermate controls were given four weekly subcutaneous injections of azoxymethane (10 mg/kg). Sep15 knockout mice developed significantly (p<0.001) fewer aberrant crypt foci than controls demonstrating that loss of Sep15 protects against aberrant crypt foci formation. Dietary selenium above adequate levels did not significantly affect aberrant crypt foci formation in Sep15 knockout mice. To investigate molecular targets affected by loss of Sep15, gene expression patterns in colonic mucosal cells of knockout and wild type mice were examined using microarray analysis. Subsequent analyses verified that guanylate binding protein-1 (GBP-1) mRNA and protein expression were strongly upregulated in Sep15 knockout mice. GBP-1, which is expressed in response to interferon-γ, is considered to be an activation marker during inflammatory diseases, and up-regulation of GBP-1 in humans has been associated with a highly significant, increased five-year survival rate in colorectal cancer patients. In agreement with these studies, we observed a higher level of interferon-γ in plasma of Sep15 knockout mice. Overall, our results demonstrate for the first time, that Sep15 knockout mice are protected against chemically-induced aberrant crypt foci formation and that Sep15 appears to have oncogenic properties in colon carcinogenesis in vivo.


Asunto(s)
Neoplasias del Colon/prevención & control , Selenoproteínas/genética , Animales , Secuencia de Bases , Western Blotting , Neoplasias del Colon/inducido químicamente , Citocinas/metabolismo , Cartilla de ADN , Perfilación de la Expresión Génica , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...