Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 16(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39057956

RESUMEN

The characteristic accumulation of circulating uremic toxins, such as indoxyl sulfate (IS), in chronic kidney disease (CKD) further exacerbates the disease progression. The gut microbiota, particularly gut bacterial-specific enzymes, represents a selective and attractive target for suppressing uremic toxin production and slowing the progression of renal failure. This study investigates the role of 4-phenylbutyrate (PB) and structurally related compounds, which are speculated to possess renoprotective properties in suppressing IS production and slowing or reversing renal failure in CKD. In vitro enzyme kinetic studies showed that 7-phenylheptanoic acid (PH), a PB homologue, suppresses the tryptophan indole lyase (TIL)-catalyzed decomposition of tryptophan to indole, the precursor of IS. A hydroxypropyl ß-cyclodextrin (HPßCD) inclusion complex formulation of PH was prepared to enhance its biopharmaceutical properties and to facilitate in vivo evaluation. Prophylactic oral administration of the PH-HPßCD complex formulation reduced circulating IS and attenuated the deterioration of renal function and tubulointerstitial fibrosis in adenine-induced CKD mice. Additionally, treatment of moderately advanced adenine-induced CKD mice with the formulation ameliorated renal failure, although tissue fibrosis was not improved. These findings suggest that PH-HPßCD can slow the progression of renal failure and may have implications for preventing or managing CKD, particularly in early-stage disease.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina , Adenina , Progresión de la Enfermedad , Insuficiencia Renal Crónica , Animales , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/inducido químicamente , 2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Masculino , Ratones , Fenilbutiratos/farmacología , Fenilbutiratos/uso terapéutico , Indicán , Ratones Endogámicos C57BL , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Tóxinas Urémicas
2.
Biol Pharm Bull ; 47(2): 389-393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38325827

RESUMEN

It was recently reported that the dexmedetomidine concentration within the extracorporeal circuit decreases with co-administration of midazolam. In this study, we investigated whether displacement of dexmedetomidine by midazolam from the binding site of major plasma proteins, human serum albumin (HSA) and α1-acid glycoprotein (AAG), would increase levels of free dexmedetomidine that could be adsorbed to the circuit. Equilibrium dialysis experiments indicated that dexmedetomidine binds to a single site on both HSA and AAG with four times greater affinity than midazolam. Midazolam-mediated inhibition of the binding of dexmedetomidine to HSA and AAG was also examined. The binding of dexmedetomidine to these proteins decreased in the presence of midazolam. Competitive binding experiments suggested that the inhibition of binding by midazolam was due to competitive displacement at site II of HSA and due to non-competitive displacement at the site of AAG. Thus, our present data indicate that free dexmedetomidine displaced by midazolam from site II of HSA or from AAG is adsorbed onto extracorporeal circuits, resulting in a change in the dexmedetomidine concentration within the circuit.


Asunto(s)
Dexmedetomidina , Midazolam , Humanos , Unión Proteica/fisiología , Dexmedetomidina/farmacología , Proteínas Sanguíneas/metabolismo , Orosomucoide/metabolismo , Albúmina Sérica Humana/metabolismo
3.
Pharmaceutics ; 16(1)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38258093

RESUMEN

Despite major improvements brought about by the introduction of taste-masked formulations of 4-phenylbutyrate (PB), poor compliance remains a significant drawback to treatment for some pediatric and dysphagic patients with urea cycle disorders (UCDs). This study reports on the development of a cyclodextrin (CD)-based orally disintegrating tablet (ODT) formulation for PB as an alternative to existing formulations. This is based on previous reports of the PB taste-masking potential of CDs and the suitability of ODTs for improving compliance in pediatric and dysphagic populations. In preliminary studies, the interactions of PB with α and ßCD in the solid state were characterized using X-ray diffraction, scanning electron microscopy, dissolution, and accelerated stability studies. Based on these studies, lyophilized PB-CD solid systems were formulated into ODTs after wet granulation. Evaluation of the ODTs showed that they had adequate physical characteristics, including hardness and friability and good storage stability. Notably, the developed αCD-based ODT for PB had a disintegration time of 28 s and achieved a slightly acidic and agreeable pH (≈5.5) in solution, which is suitable for effective PB-CD complexation and taste masking. The developed formulation could be helpful as an alternative to existing PB formulations, especially for pediatric and dysphagic UCD patients.

4.
Chem Pharm Bull (Tokyo) ; 72(1): 21-27, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171901

RESUMEN

Pirarubicin (THP) shows more rapid intracellular uptake, more effective antitumor activity, and less cardiac toxicity, compared to doxorubicin. However, THP is distributed to both tumor and normal tissues indiscriminately. This study aimed to develop a nanosuspension to deliver THP to tumor tissues more efficiently. Fatty-acid-modified THPs (FA-THPs; octanoic acid, dodecanoic acid, palmitic acid-THPs) were synthesized to increase the hydrophobicity of THP. Nanosuspensions of these FA-THPs were then prepared using an antisolvent precipitation technique. Among the FA-THPs, the most efficiently drug-loaded nanosuspension was obtained from palmitic acid-THP (pal-THP) using an aqueous antisolvent containing bovine serum albumin as a stabilizer. The pal-THP nanoparticles in the nanosuspension were confirmed to be of optimal size (100-125 nm) for delivery to tumor tissues using dynamic light scattering and transmission electron microscopy. The pal-THP nanosuspension showed cytotoxicity in colon 26 cells. The nanosuspension was shown to disintegrate in the presence of surfactants such as lecithin, liberating pal-THP, which was converted to free THP in acidic media. It is therefore proposed that pal-THP nanoparticles that reach tumor cells after intravenous administration would exert antitumor effect by liberating pal-THP (i.e., disintegration of nanoparticles by the interaction with cell membrane), followed by the release of free THP in the acidic milieu of tumor cells. These findings indicate that FA-THP nanosuspensions, particularly pal-THP nanosuspension, hold promise as a candidate for cancer treatment. However, further in vivo studies are necessary.


Asunto(s)
Ácidos Grasos , Nanopartículas , Ácido Palmítico , Doxorrubicina/farmacología , Albúmina Sérica Bovina , Suspensiones , Tamaño de la Partícula , Solubilidad
5.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894771

RESUMEN

4-phenylbutyrate (PB) and structurally related compounds hold promise for treating many diseases, including cancers. However, pharmaceutical limitations, such as an unpleasant taste or poor aqueous solubility, impede their evaluation and clinical use. This study explores cyclodextrin (CD) complexation as a strategy to address these limitations. The structural chemistry of the CD complexes of these compounds was analyzed using phase solubility, nuclear magnetic resonance (NMR) spectroscopic techniques, and molecular modeling to inform the choice of CD for such application. The study revealed that PB and its shorter-chain derivative form 1:1 αCD complexes, while the longer-chain derivatives form 1:2 (guest:host) complexes. αCD includes the alkyl chain of the shorter-chain compounds, depositing the phenyl ring around its secondary rim, whereas two αCD molecules sandwich the phenyl ring in a secondary-to-secondary rim orientation for the longer-chain derivatives. ßCD includes each compound to form 1:1 complexes, with their alkyl chains bent to varying degrees within the CD cavity. γCD includes two molecules of each compound to form 2:1 complexes, with both parallel and antiparallel orientations plausible. The study found that αCD is more suitable for overcoming the pharmaceutical drawbacks of PB and its shorter-chain derivative, while ßCD is better for the longer-chain derivatives.


Asunto(s)
Ciclodextrinas , Ciclodextrinas/química , Química Farmacéutica/métodos , Fenilbutiratos , Preparaciones Farmacéuticas , Solubilidad
6.
Artículo en Inglés | MEDLINE | ID: mdl-37295607

RESUMEN

Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that is a notable biomarker of kidney injury. However, it is not clear how LPA is produced in renal cells. In this study, we explored LPA generation and its enzymatic pathway in a rat kidney-derived cell, NRK52E cells. Culturing of NRK52E cells with acyl lysophosphatidylcholine (acyl LPC), or lyso-platelet activating factor (lysoPAF, alkyl LPC) was resulted in increased extracellular level of choline, co-product with LPA by lysophospholipase D (lysoPLD). Their activities were enhanced by addition of calcium ions to the cell culture medium, but failed to be inhibited by S32826, an autotaxin (ATX)-specific inhibitor. Liquid chromatography-tandem mass spectrometric analysis revealed the small, but significant extracellular production of acyl LPA/cyclic phosphatidic acid (cPA) and alkyl LPA/cPA. The mRNA expression of glycerophosphodiesterase (GDE) 7 with lysoPLD activity was elevated in confluent NRK52E cells cultured over 3 days. GDE7 plasmid-transfection of NRK52E cells augmented both extracellular and intracellular productions of LPAs (acyl and alkyl) as well as extracellular productions of cPAs (acyl and alkyl) from exogenous LPCs (acyl and alkyl). These results suggest that intact NRK52E cells are able to produce choline and LPA/cPA from exogenous LPCs through the enzymatic action of GDE7 that is located on the plasma membranes and intracellular membranes.


Asunto(s)
Lisofosfatidilcolinas , Ácidos Fosfatidicos , Ratas , Animales , Lisofosfatidilcolinas/metabolismo , Lisofosfolípidos/metabolismo , Colina/metabolismo
7.
J Med Chem ; 66(1): 951-961, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36538495

RESUMEN

Mycophenolic acid (MP) is an active metabolite of mycophenolate mofetil, a widely used immunosuppressive drug. MP normally exhibits high plasma protein binding (97-99%), but its binding rate is decreased in patients with renal insufficiency. This decreased protein binding is thought to be associated with leukopenia, a side effect of MP. In this study, we characterized the change in protein binding of MP in renal failure patients. Our findings indicate that MP binds strongly to subdomain IIA of human serum albumin. X-ray crystallographic data indicated that the isobenzofuran group of MP forms a stacking interaction with Trp214, and the carboxyl group of MP is located at a position that allows the formation of hydrogen bonds with Tyr150, His242, or Arg257. Due to the specific binding of MP to subdomain IIA, MP is thought to be displaced by uremic toxin (3-carboxy-4-methyl-5-propyl-2-furan-propionic acid) and fatty acids (oleate or myristate) that can bind to subdomain IIA, resulting in the decreased plasma protein binding of MP in renal failure.


Asunto(s)
Ácido Micofenólico , Insuficiencia Renal , Humanos , Sitios de Unión , Unión Proteica , Albúmina Sérica/química , Albúmina Sérica Humana/metabolismo
8.
J Pharm Pharmacol ; 75(2): 236-244, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36548517

RESUMEN

OBJECTIVES: 4-Phenylbutyrate (PB), which is used in the management of urea cycle disorders, has an unpleasant taste leading to poor patient compliance. Existing PB formulations though helpful, have some limitations in their use. This study reports on attempts to mask this unpleasant taste by complexing PB with cyclodextrins (CDs) to improve patient compliance. METHODS: α, ß and γCD were used as CDs. Phase solubility studies, circular dichroism, 1H-NMR spectroscopy, including ROESY, and molecular modelling were used to investigate and characterize the PB-CD interactions in solution. The taste-masking effect of the CDs was evaluated using in vitro taste sensor measurements. KEY FINDINGS: PB interacts with α, ß and γCD in solution to form 1:1, 1:1 and 1:2 CD: PB inclusion complexes, respectively, with stability constants in the order αCD > ßCD > γCD. Taste evaluation revealed that the CDs significantly mask the taste of PB through the formation of the inclusion complexes. Notably, αCD masked the bitter taste of PB to 30% of the initial taste at a 1:1 molar ratio. CONCLUSION: αCD significantly masks the unpleasant taste of PB in solution and can be used to formulate PB to address the limitations of existing formulations and improve patient compliance and quality of life.


Asunto(s)
Ciclodextrinas , gamma-Ciclodextrinas , Humanos , Gusto , Calidad de Vida , Ciclodextrinas/química , Solubilidad
9.
Biol Pharm Bull ; 45(6): 803-805, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35650107

RESUMEN

Nateglinide (NAT) is used to treat diabetes, stimulating pancreatic islet ß-cells with residual insulin secretory capacity to increase insulin secretion. NAT has been reported to bind to human serum albumin (HSA), but the detail is still unclear. In the current study, we investigated the location and the affinity for the binding of NAT to HSA. Quantitative analysis data from the ultrafiltration experiment indicated that NAT binds strongly to a primary site on HSA with a high affinity. The presence of diazepam (DZP) or ibuprofen (IB), the specific site II ligands of HSA, decreased the binding constants of NAT respectively, without the significant changes in the number of binding sites. Whereas warfarin (WF), a site I specific ligand, did not affect the binding of NAT. Fluorescent replacement experiment showed that NAT replaced dansylsarcosine (DNSS), a site II probe of HSA, but not WF. An increasing level of myristate and uremic toxins, indoxyl sulphate (IS), indoxyl acetate (IA) and p-cresyl sulphate (PCS), during renal disease significantly increased the concentration of unbound NAT. These findings suggest that NAT specifically binds to site II of HSA and the binding capacity and pharmacokinetics of NAT change in renal diseases.


Asunto(s)
Secretagogos , Albúmina Sérica Humana , Ácidos Grasos , Humanos , Insulina , Insulina Regular Humana , Ligandos , Nateglinida , Albúmina Sérica/metabolismo , Tóxinas Urémicas , Warfarina
10.
Anticancer Res ; 42(3): 1333-1338, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35220224

RESUMEN

BACKGROUND/AIM: Nitric oxide (NO) has antitumor activity against various solid tumor cell types in addition to its vasodilatory effect. In the current study, we investigated the effect and mechanism of the synthetic nitrated form (NO2-NAT) of nateglinide, a hypoglycemic agent, on the induction of cell death in human pancreatic cancer cells. MATERIALS AND METHODS: NO production was evaluated by measuring nitrite (NO2) and nitrate (NO3) (NOx). Apoptotic cell numbers were determined using annexin V. RESULTS: NO2-NAT released nitrate and nitrite ions immediately upon dissolving in aqueous solution. NO2-NAT caused significant extracellular leakage of lactate dehydrogenase (LDH) in the human pancreatic cancer cell lines AsPC1 and BxPC3, and increased annexin-positive cells in a time- and concentration-dependent manner. NO2-NAT also significantly increased the activity of caspases 3 and 7. Exposure to Z-VAD-FMK, a caspase inhibitor, significantly suppressed NO2-NAT-induced cell death. CONCLUSION: These results indicated that NO2-NAT induces apoptosis in human pancreatic cancer cells and may serve as a new NO-based chemotherapeutic agent for the treatment of pancreatic cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Nateglinida/farmacología , Donantes de Óxido Nítrico/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Antineoplásicos/metabolismo , Línea Celular Tumoral , Activación Enzimática , Humanos , Nateglinida/análogos & derivados , Nateglinida/metabolismo , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Transducción de Señal
11.
Eur J Drug Metab Pharmacokinet ; 47(2): 177-185, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34881402

RESUMEN

BACKGROUND AND OBJECTIVES: Atemoya (Annona atemoya) is increasingly being consumed worldwide because of its pleasant taste. However, only limited information is available concerning possible atemoya-drug interactions. In the present study, the issue of whether atemoya shows food-drug interactions with substrate drugs of the major drug-metabolizing cytochrome P450s (i.e., CYP1A2, CYP2C9, and CYP3A) is addressed. METHODS: The ability of atemoya juice to inhibit the activities of phenacetin O-deethylase (CYP1A2), diclofenac 4'-hydroxylase (CYP2C9), and midazolam 1'-hydroxylase (CYP3A) was examined in vitro using human and rat liver microsomes. The in vivo pharmacokinetics of phenacetin and metabolites derived from it in rats when atemoya juice or fluvoxamine (a CYP1A2 inhibitor) was preadministered were also investigated. RESULTS: Atemoya juice significantly inhibited CYP1A2 activity in human liver microsomes, but not the activities of CYP2C9 and CYP3A. In spite of this inhibition, preadministration of atemoya had no effect on the pharmacokinetics of phenacetin, a CYP1A2 substrate, in rats. Meanwhile, preadministration of fluvoxamine significantly extended the time needed for the elimination of phenacetin, possibly due to the inhibition of CYP1A2. This suggests that the intake of an excess amount of atemoya juice is necessary to cause a change in the pharmacokinetics of phenacetin when the IC50 values for CYP1A2 inhibition by atemoya and fluvoxamine are taken into account. CONCLUSION: The results indicate that a daily intake of atemoya would not change the pharmacokinetics of CYP1A2 substrates such as phenacetin as well as CYP2C9- and CYP3A-substrate drugs.


Asunto(s)
Annona , Animales , Annona/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Interacciones Alimento-Droga , Frutas , Microsomas Hepáticos/metabolismo , Fenacetina , Ratas
12.
J Pharm Pharmacol ; 74(1): 88-93, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34791369

RESUMEN

OBJECTIVES: Echinocandins are widely used for the treatment of invasive fungal diseases. While they bind strongly to plasma proteins, our knowledge of this process is not sufficient to permit their pharmacokinetics and pharmacodynamics targets to be discussed. In this study, we characterized the binding of two echinocandins, caspofungin and micafungin, to plasma proteins, human serum albumin (HSA) and human α 1-acid glycoprotein (AAG). METHODS: The binding parameters, number of binding sites (n) and association constant (K) for caspofungin and micafungin to HSA and AAG were determined by equilibrium dialysis. The binding site on HSA for these echinocandins was identified by conducting inhibition experiments. KEY FINDINGS: Caspofungin was found to bind strongly to a single site on HSA (n = 1.26, K = 0.45 × 106 M-1) and AAG (n = 0.99, K = 0.29 × 106 M-1). Micafungin was found to bind more strongly to HSA (n = 1.35, K = 1.44 × 106 M-1) and AAG (n = 1.32, K = 1.16 × 106 M-1). The binding site for these drugs on HSA appears to be within subdomain IA. CONCLUSIONS: Free fraction of caspofungin and micafungin in patients may not be substantially affected due to the contribution of AAG to the overall protein binding and the binding to subdomain IA on HSA, which is different from the major drug-binding sites within subdomains IB, IIA and IIIA.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Caspofungina/farmacología , Micafungina/farmacología , Orosomucoide/metabolismo , Unión Proteica , Antifúngicos/farmacología , Sitios de Unión/efectos de los fármacos , Equinocandinas/farmacología , Humanos , Técnicas In Vitro , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Infecciones Fúngicas Invasoras/microbiología , Pruebas de Sensibilidad Microbiana/métodos , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Albúmina Sérica Humana/metabolismo
13.
Biol Pharm Bull ; 44(2): 259-265, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33518678

RESUMEN

Nafamostat mesilate (NFM) is used as an anticoagulant during hemodialysis in patients who have had complications due to hemorrhages. The formation of precipitates, which could lead to the interruption of hemodialysis has been reported when NFM is infused into blood during hemodialysis. We report herein on an examination of possible factors that could cause this. The effects of electrolytes such as phosphates, citrates or succinates on the formation of precipitates were examined by mixing NFM with aqueous solutions or plasma that contained these electrolytes. The formation of precipitates was observed in all electrolyte solutions when higher concentrations of NFM were mixed at around physiological pH. In the case of plasma, precipitates were observed when solutions containing higher concentrations of NFM were mixed with plasma that contained phosphate and citrate. In addition, the formation of precipitates under dynamic conditions where NFM was infused into flowing electrolyte solutions was also evaluated. The data suggested that such precipitates might be formed and disrupt the blood flow and/or an NFM infusion when NFM is infused into blood flowing in the hemodialysis circuit. The findings presented herein suggest the serum levels of anionic electrolytes (e.g., phosphate), the type of excipients present in pharmaceutical products (e.g., succinic acid or citric acid), the concentration of NFM used for the infusion or the rates of NFM infusion and blood flow are all factors that could affect precipitate formation during NFM infusions for hemodialysis.


Asunto(s)
Anticoagulantes/administración & dosificación , Benzamidinas/administración & dosificación , Soluciones para Diálisis/química , Guanidinas/administración & dosificación , Diálisis Renal/efectos adversos , Aniones/sangre , Aniones/química , Anticoagulantes/química , Benzamidinas/química , Electrólitos/sangre , Electrólitos/química , Guanidinas/química , Hemorragia/tratamiento farmacológico , Hemorragia/etiología , Humanos , Plasma/química , Solubilidad
14.
Mol Pharm ; 18(3): 1061-1070, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33478218

RESUMEN

Benzbromarone has been used for the treatment of gout for more than 30 years. Although it shows a high level of binding to plasma proteins (>99%), our knowledge of this binding is not sufficiently extensive to permit us to understand its pharmacokinetics and pharmacodynamics. To address this issue in more detail, we characterized the binding of benzbromarone to human serum albumin (HSA), the most abundant protein in plasma. Equilibrium dialysis and circular dichroism findings indicated that benzbromarone binds strongly to one primary as well as to multiple secondary sites on HSA and that the bromine atoms of benzbromarone play important roles in this high affinity binding. An X-ray crystallographic study revealed that benzbromarone molecules bind to hydrophobic pockets within subdomains IB, IIA, and IIIA. Inhibition experiments using site specific ligands (subdomain IB; fusidic acid, IIA; warfarin, IIIA; diazepam) indicated that the primary and secondary binding sites that benzbromarone binds to are within subdomains IIIA and IB/IIA, respectively. Lastly, a study of the effect of fatty acids on the benzbromarone-HSA interaction suggested that benzbromarone, when displaced from subdomain IIIA by sodium oleate, could transfer to subdomains IB or IIA. Thus, these data will permit more relevant assessments of the displacement interactions of benzbromarone especially in cases of co-administered drugs or endogenous compounds that also bind to subdomain IIIA. In addition, the findings presented herein will also be useful for designing drug combination therapy in which pharmacokinetic and pharmacodynamic performance need to be controlled.


Asunto(s)
Benzbromarona/metabolismo , Sitios de Unión/fisiología , Dominios Proteicos/fisiología , Albúmina Sérica Humana/metabolismo , Dicroismo Circular/métodos , Cristalografía por Rayos X/métodos , Ácidos Grasos/metabolismo , Humanos , Ligandos , Unión Proteica/fisiología
15.
Pharmaceuticals (Basel) ; 14(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396604

RESUMEN

In a previous study, we reported on the development of a synthetic polymer conjugate of pirarubicin (THP) that was formed via an acid-labile hydrazone bond between the polymer and the THP. However, the synthetic polymer itself was non-biodegradable, which could lead to unexpected adverse effects. Human serum albumin (HSA), which has a high biocompatibility and good biodegradability, is also a potent carrier for delivering antitumor drugs. The objective of this study was to develop pH-sensitive HSA conjugates of THP (HSA-THP), and investigate the release of THP and the cytotoxicity under acidic conditions in vitro for further clinical development. HSA-THP was synthesized by conjugating maleimide hydrazone derivatives of THP with poly-thiolated HSA using 2-iminothiolane, via a thiol-maleimide coupling reaction. We synthesized two types of HSA-THP that contained different amounts of THP (HSA-THP2 and HSA-THP4). Free THP was released from both of the HSA conjugates more rapidly at an acidic pH, and the rates of release for HSA-THP2 and HSA-THP4 were similar. Moreover, both HSA-THPs exhibited a higher cytotoxicity at acidic pH than at neutral pH, which is consistent with the effective liberation of free THP under acidic conditions. These findings suggest that these types of HSA-THPs are promising candidates for further development.

16.
Eur J Pharm Sci ; 106: 10-19, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28528285

RESUMEN

In this study, we compared the enhanced permeability and retention (EPR) effect, toxicity, and therapeutic effect of the conjugate of the linear polymer poly(N-(2-hydroxypropyl)methacrylamide) (HPMA) with pirarubicin with an Mw below the renal threshold (39g/mol) (named LINEAR) and the disulfide-linked tandem-polymeric dimer of the poly(HPMA)-pirarubicin conjugate with an Mw above the renal threshold (93g/mol) (named DIBLOCK). The DIBLOCK conjugate, which was susceptible to reductive degradation, showed both a better EPR effect (tumor delivery) (2.5 times greater at 24h) and a prolonged plasma half-life. In addition, DIBLOCK had a better antitumor effect, as judged by percent survival, than did LINEAR (80% vs 65% at 150days), without any apparent toxicity in an S180 tumor model. However, the LD50 value of LINEAR was slightly higher than that of DIBLOCK (50mg/kg vs 37.5mg/kg, respectively). DIBLOCK required a longer time than LINEAR to reach maximum accumulation in the tumor. DIBLOCK also showed a greater time-dependent increase in the concentration in the tumor compared with the plasma concentration.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/análogos & derivados , Portadores de Fármacos/síntesis química , Ácidos Polimetacrílicos/síntesis química , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/química , Disponibilidad Biológica , Transporte Biológico , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Doxorrubicina/efectos adversos , Doxorrubicina/química , Doxorrubicina/farmacología , Liberación de Fármacos , Semivida , Humanos , Masculino , Ratones , Peso Molecular , Reabsorción Renal , Distribución Tisular
17.
Mol Pharm ; 13(12): 4106-4115, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27934482

RESUMEN

Many conjugates of water-soluble polymers with biologically active molecules were developed during the last two decades. Although, therapeutic effects of these conjugates are affected by the properties of carriers, the properties of the attached drugs appear more important than the same carrier polymer in this case. Pirarubicin (THP), a tetrahydropyranyl derivative of doxorubicin (DOX), demonstrated more rapid cellular internalization and potent cytotoxicity than DOX. Here, we conjugated the THP or DOX to N-(2-hydroxypropyl)methacrylamide copolymer via a hydrazone bond. The polymeric prodrug conjugates, P-THP and P-DOX, respectively, had comparable hydrodynamic sizes and drug loading. Compared with P-DOX, P-THP showed approximately 10 times greater cellular uptake during a 240 min incubation and a cytotoxicity that was more than 10 times higher during a 72-h incubation. A marginal difference was seen in P-THP and P-DOX accumulation in the liver and kidney at 6 h after drug administration, but no significant difference occurred in the tumor drug concentration during 6-24 h after drug administration. Antitumor activity against xenograft human pancreatic tumor (SUIT2) in mice was greater for P-THP than for P-DOX. To sum up, the present study compared the biological behavior of two different drugs, each attached to an N-(2-hydroxypropyl)methacrylamide copolymer carrier, with regard to their uptake by tumor cells, body distribution, accumulation in tumors, cytotoxicity, and antitumor activity in vitro and in vivo. No differences in the tumor cell uptake of the polymer-drug conjugates, P-THP and P-DOX, were observed. In contrast, the intracellular uptake of free THP liberated from the P-THP was 25-30 times higher than that of DOX liberated from P-DOX. This finding indicates that proper selection of the carrier, and especially conjugated active pharmaceutical ingredient (API) are most critical for anticancer activity of the polymer-drug conjugates. THP, in this respect, was found to be a more preferable API for polymer conjugation than DOX. Hence the treatment based on enhanced permeability and retention (EPR) effect that targets more selectively to solid tumors can be best achieved with THP, although both polymer conjugates of DOX and THP exhibited the EPR effects and drug release profiles in acidic pH similarly.


Asunto(s)
Acrilamidas/química , Antibióticos Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacología , Portadores de Fármacos/química , Polímeros/química , Animales , Antibióticos Antineoplásicos/química , Antineoplásicos/química , Antineoplásicos/farmacología , Doxorrubicina/química , Portadores de Fármacos/administración & dosificación , Humanos , Ratones , Ratones Endogámicos BALB C , Polímeros/administración & dosificación , Sarcoma Experimental/tratamiento farmacológico , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Microcirculation ; 23(3): 173-82, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26237291

RESUMEN

Solid tumor has unique vascular architecture, excessive production of vascular mediators, and extravasation of macromolecules from blood vessels into the tumor tissue interstitium. These features comprise the phenomenon named the EPR effect of solid tumors, described in 1986. Our investigations on the EPR revealed that many mediators, such as bradykinin, NO, and prostaglandins, are involved in the EPR effect, which is now believed to be the most important element for cancer-selective drug delivery. However, tumors in vivo manifest great diversity, and some demonstrate a poor EPR effect, for example, because of impaired vascular flow involving thrombosis, with poor drug delivery and therapeutic failure. Another important element of this effect is that it operates in metastatic cancers. Because few drugs are currently effective against metastases, the EPR effect offers a great advantage in nanomedicine therapy. The EPR effect can also be augmented two to three times via nitroglycerin, ACE inhibitors, and angiotensin II-induced hypertension. The delivery of nanomedicines to tumors can thereby be enhanced. In traditional PDT, most PSs had low MW and little tumor-selective accumulation. Our hydroxypropylmetacrylamide-polymer-conjugated-PS, zinc protoporphyrin (apparent MW >50 kDa) showed tumor-selective accumulation, as revealed by fluorescent imaging of autochthonous cancers. After one i.v. injection of polymeric PS followed by two or three xenon light irradiation/treatments, most tumors regressed. Thus, nanoprobes with the EPR effect seem to have remarkable effects. Enhancing the EPR effect by using vascular modulators will aid innovations in PDT for greater tumor-targeted drug delivery.


Asunto(s)
Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Neoplasias , Neovascularización Patológica , Fotoquimioterapia/métodos , Antineoplásicos/historia , Sistemas de Liberación de Medicamentos/historia , Historia del Siglo XX , Historia del Siglo XXI , Metástasis de la Neoplasia , Neoplasias/sangre , Neoplasias/patología , Neoplasias/terapia , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Patológica/terapia , Permeabilidad , Fotoquimioterapia/historia
19.
J Drug Target ; 24(5): 399-407, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26302870

RESUMEN

Previous studies indicated the potential of zinc protoporphyrin (ZnPP) as an antitumor agent targeting to the tumor survival factor heme oxygenase-1, and/or for photodynamic therapy (PDT). In this study, to achieve tumor-targeted delivery, styrene-maleic acid-copolymer conjugated ZnPP (SMA-ZnPP) was synthesized via amide bond, which showed good water solubility, having ZnPP loading of 15%. More importantly, it forms micelles in aqueous solution with a mean particle size of 111.6 nm, whereas it has an apparent Mw of 65 kDa. This micelle formation was not detracted by serum albumin, suggesting it is stable in circulation. Further SMA-ZnPP conjugate will behave as an albumin complex in blood with much larger size (235 kDa) by virtue of the albumin binding property of SMA. Consequently, SMA-ZnPP conjugate exhibited prolonged circulating retention and preferential tumor accumulation by taking advantage of enhanced permeability and retention (EPR) effect. Clear tumor imaging was thus achieved by detecting the fluorescence of ZnPP. In addition, the cytotoxicity and PDT effect of SMA-ZnPP conjugate was confirmed in human cervical cancer HeLa cells. Light irradiation remarkably increased the cytotoxicity (IC50, from 33 to 5 µM). These findings may provide new options and knowledge for developing ZnPP based anticancer theranostic drugs.


Asunto(s)
Antineoplásicos/farmacología , Maleatos/farmacología , Metaloporfirinas/farmacología , Poliestirenos/farmacología , Protoporfirinas/farmacología , Estireno/farmacología , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Femenino , Células HeLa , Hemo-Oxigenasa 1/metabolismo , Humanos , Masculino , Ratones , Micelas , Tamaño de la Partícula , Permeabilidad , Fotoquimioterapia/métodos , Solubilidad , Neoplasias del Cuello Uterino/tratamiento farmacológico
20.
Colloids Surf B Biointerfaces ; 138: 128-37, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26674841

RESUMEN

Cisplatin (CDDP) is widely used to treat various cancers. However, its distribution to normal tissues causes serious adverse effects. For this study, we synthesized a complex of styrene-maleic acid copolymer (SMA) and CDDP (SMA-CDDP), which formed polymeric micelles, to achieve tumor-selective drug delivery based on the enhanced permeability and retention (EPR) effect. SMA-CDDP is obtained by regulating the pH of the reaction solution of SMA and CDDP. The mean SMA-CDDP particle size was 102.5 nm in PBS according to electrophoretic light scattering, and the CDDP content was 20.1% (w/w). The release rate of free CDDP derivatives from the SMA-CDDP complex at physiological pH was quite slow (0.75%/day), whereas it was much faster at pH 5.5 (4.4%/day). SMA-CDDP thus had weaker in vitro toxicity at pH 7.4 but higher cytotoxicity at pH 5.5. In vivo pharmacokinetic studies showed a 5-fold higher tumor concentration of SMA-CDDP than of free CDDP. SMA-CDDP had more effective antitumor potential but lower toxicity than did free CDDP in mice after i.v. administration. Administration of parental free CDDP at 4 mg/kg×3 caused a weight loss of more than 5%; SMA-CDDP at 60 mg/kg (CDDP equivalent)×3 caused no significant weight change but markedly suppressed S-180 tumor growth. These findings together suggested using micelles of the SMA-CDDP complex as a cancer chemotherapeutic agent because of beneficial properties-tumor-selective accumulation and relatively rapid drug release at the acidic pH of the tumor-which resulted in superior antitumor effects and fewer side effects compared with free CDDP.


Asunto(s)
Cisplatino/farmacología , Maleatos/química , Neoplasias Experimentales/tratamiento farmacológico , Polímeros/química , Estireno/química , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/química , Cisplatino/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Dispersión Dinámica de Luz , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Masculino , Ratones , Microscopía Electrónica de Transmisión , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Permeabilidad , Espectrofotometría , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA