Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glycobiology ; 31(10): 1401-1414, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34192331

RESUMEN

Immunoglobulin G (IgG) has a conserved N-glycosylation site at Asn297 in the fragment crystallizable (Fc) region. Previous studies have shown that N-glycosylation of this site is a critical mediator of the antibody's effector functions, such as antibody-dependent cellular cytotoxicity. While the N-glycan structures attached to the IgG-Fc region are generally heterogenous, IgGs engineered to be homogenously glycosylated with functional N-glycans may improve the efficacy of antibodies. The major glycoforms of the N-glycans on the IgG-Fc region are bi-antennary complex-type N-glycans, while multibranched complex-type N-glycans are not typically found. However, IgGs with tri-antennary complex-type N-glycans have been generated using the N-glycan remodeling technique, suggesting that more branched N-glycans might be artificially attached. At present, little is known about the properties of these IgGs. In this study, IgGs with multibranched N-glycans on the Fc region were prepared by using a combination of the glycosynthase/oxazoline substrate-based N-glycan remodeling technique and successive reactions with glycosyltransferases. Among the IgGs produced by these methods, the largest N-glycan attached was a bisecting N-acetylglucosamine containing a sialylated penta-antennary structure. Concerning the Fc-mediated effector functions, the majority of IgGs with tri- and tetra-antennary N-glycans on their Fc region showed properties similar to IgGs with ordinary bi-antennary N-glycans.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/inmunología , Polisacáridos/inmunología , Receptor ErbB-2/inmunología , Acetilglucosamina/inmunología , Humanos
2.
MAbs ; 11(5): 826-836, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30990348

RESUMEN

Typical crystallizable fragment (Fc) glycans attached to the CH2 domain in therapeutic monoclonal antibodies (mAbs) are core-fucosylated and asialo-biantennary complex-type glycans, e.g., G2F (full galactosylation), G1aF (terminal galactosylation on the Man α1-6 arm), G1bF (terminal galactosylation on the Man α1-3 arm), and G0F (non-galactosylation). Terminal galactose (Gal) residues of Fc-glycans are known to influence effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (CDC), but the impact of the G1F isomers (G1aF and G1bF) on the effector functions has not been reported. Here, we prepared four types of glycoengineered anti-CD20 mAbs bearing homogeneous G2F, G1aF, G1bF, or G0F (G2F mAb, G1aF mAb, G1bF mAb, or G0F mAb, respectively), and evaluated their biological activities. Interestingly, G1aF mAb showed higher C1q- and FcγR-binding activities, CDC activity, and FcγR-activation property than G1bF mAb. The activities of G1aF mAb and G1bF mAb were at the same level as G2F mAb and G0F mAb, respectively. Hydrogen-deuterium exchange/mass spectrometry analysis of dynamic structures of mAbs revealed the greater involvement of the terminal Gal residue on the Man α1-6 arm in the structural stability of the CH2 domain. Considering that mAbs interact with FcγR and C1q via their hinge proximal region in the CH2 domain, the structural stabilization of the CH2 domain by the terminal Gal residue on the Man α1-6 arm of Fc-glycans may be important for the effector functions of mAbs. To our knowledge, this is the first report showing the impact of G1F isomers on the effector functions and dynamic structure of mAbs. Abbreviations: ABC, ammonium bicarbonate solution; ACN, acetonitrile; ADCC, antibody-dependent cell-mediated cytotoxicity; C1q, complement component 1q; CDC, complement-dependent cytotoxicity; CQA, critical quality attribute; Endo, endo-ß-N-acetylglucosaminidase; FA, formic acid; Fc, crystallizable fragment; FcγR, Fcγ receptors; Fuc, fucose; Gal, galactose; GlcNAc, N-acetylglucosamine; GST, glutathione S-transferase; HER2, human epidermal growth factor receptor 2; HDX, hydrogen-deuterium exchange; HILIC, hydrophilic interaction liquid chromatography; HLB-SPE, hydrophilic-lipophilic balance-solid-phase extraction; HPLC, high-performance liquid chromatography; mAb, monoclonal antibody; Man, mannose; MS, mass spectrometry; PBS, phosphate-buffered saline; SGP, hen egg yolk sialylglycopeptides.


Asunto(s)
Galactosa/química , Polisacáridos/química , Rituximab/química , Animales , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Pollos/inmunología , Fucosa/química , Fucosa/inmunología , Galactosa/inmunología , Glicosilación , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Manosa/química , Manosa/inmunología , Polisacáridos/inmunología , Rituximab/metabolismo , Rituximab/uso terapéutico
3.
Biosci Biotechnol Biochem ; 81(12): 2353-2359, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29090617

RESUMEN

Recently, the absence of a core-fucose residue in the N-glycan has been implicated to be important for enhancing antibody-dependent cellular cytotoxicity (ADCC) activity of immunoglobulin G monoclonal antibodies (mAbs). Here, we first prepared anti-HER2 mAbs having two core-fucosylated N-glycan chains with the single G2F, G1aF, G1bF, or G0F structure, together with those having two N-glycan chains with a single non-core-fucosylated corresponding structure for comparison, and determined their biological activities. Dissociation constants of mAbs with core-fucosylated N-glycans bound to recombinant Fcγ-receptor type IIIa variant were 10 times higher than those with the non-core-fucosylated N-glycans, regardless of core glycan structures. mAbs with the core-fucosylated N-glycans had markedly reduced ADCC activities, while those with the non-core-fucosylated N-glycans had high activities. These results indicate that the presence of a core-fucose residue in the N-glycan suppresses the binding to the Fc-receptor and the induction of ADCC of anti-HER2 mAbs.


Asunto(s)
Fucosa/química , Polisacáridos/química , Polisacáridos/metabolismo , Receptor ErbB-2/inmunología , Trastuzumab/inmunología , Trastuzumab/metabolismo , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Células CHO , Secuencia de Carbohidratos , Cricetinae , Cricetulus , Receptores de IgG/inmunología
4.
PLoS One ; 10(7): e0132848, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26200113

RESUMEN

Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-ß-N-acetyl glucosaminidases (ENG'ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells, and revealed that the glycoform influenced ADCC activity.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Fragmentos Fc de Inmunoglobulinas/metabolismo , Polisacáridos/química , Trastuzumab/metabolismo , Acetilglucosaminidasa/metabolismo , Anticuerpos Monoclonales/química , Citotoxicidad Celular Dependiente de Anticuerpos , Glicosilación , Humanos , Trastuzumab/química
5.
Biosci Biotechnol Biochem ; 77(2): 281-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23391916

RESUMEN

Haloarcula japonica is an extremely halophilic archaeon that requires high concentrations of NaCl to grow. Recently the draft genome sequence of Ha. japonica was determined, and a gene encoding an α-amylase, malA, was identified. The deduced amino acid sequence of MalA, consisting of 663 amino acids, showed homology to α-amylase family enzymes. The sequence did not contain a secretion signal sequence, indicating that the protein is a cytoplasmic enzyme. Transcription of the malA gene was confirmed by reverse transcription (RT)-PCR, and the transcription start site was determined by a 5'-RACE experiment. The malA gene was cloned and expressed in Ha. japonica. The recombinant MalA was purified and characterized. MalA required a high concentration of NaCl for starch-hydrolyzing activity. It showed higher activity on soluble starch, amylose, and amylopectin, and lower activity on glycogen.


Asunto(s)
Proteínas Arqueales/metabolismo , Haloarcula/enzimología , Haloarcula/genética , alfa-Amilasas/metabolismo , Secuencia de Aminoácidos , Amilopectina/metabolismo , Amilosa/metabolismo , Proteínas Arqueales/genética , Secuencia de Bases , Clonación Molecular , Citoplasma/efectos de los fármacos , Citoplasma/enzimología , Expresión Génica/efectos de los fármacos , Haloarcula/efectos de los fármacos , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salinidad , Homología de Secuencia de Aminoácido , Cloruro de Sodio/farmacología , Almidón/metabolismo , Transcripción Genética/efectos de los fármacos , alfa-Amilasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...