Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Gen Virol ; 105(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38757942

RESUMEN

Since its discovery in 1965, our understanding of the hepatitis B virus (HBV) replication cycle and host immune responses has increased markedly. In contrast, our knowledge of the molecular biology of hepatitis delta virus (HDV), which is associated with more severe liver disease, is less well understood. Despite the progress made, critical gaps remain in our knowledge of HBV and HDV replication and the mechanisms underlying viral persistence and evasion of host immunity. The International HBV Meeting is the leading annual scientific meeting for presenting the latest advances in HBV and HDV molecular virology, immunology, and epidemiology. In 2023, the annual scientific meeting was held in Kobe, Japan and this review summarises some of the advances presented at the Meeting and lists gaps in our knowledge that may facilitate the development of new therapies.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Virus de la Hepatitis Delta , Replicación Viral , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis B/inmunología , Humanos , Virus de la Hepatitis Delta/genética , Virus de la Hepatitis Delta/fisiología , Hepatitis B/virología , Hepatitis B/inmunología , Biología Molecular , Japón , Hepatitis D/virología , Interacciones Huésped-Patógeno/inmunología , Interacciones Huésped-Patógeno/genética
2.
J Biol Chem ; 300(3): 105724, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325742

RESUMEN

Mammalian cells have evolved strategies to regulate gene expression when oxygen is limited. Hypoxia-inducible factors (HIF) are the major transcriptional regulators of host gene expression. We previously reported that HIFs bind and activate hepatitis B virus (HBV) DNA transcription under low oxygen conditions; however, the global cellular response to low oxygen is mediated by a family of oxygenases that work in concert with HIFs. Recent studies have identified a role for chromatin modifiers in sensing cellular oxygen and orchestrating transcriptional responses, but their role in the HBV life cycle is as yet undefined. We demonstrated that histone lysine demethylase 4 (KDM4) can restrict HBV, and pharmacological or oxygen-mediated inhibition of the demethylase increases viral RNAs derived from both episomal and integrated copies of the viral genome. Sequencing studies demonstrated that KDM4 is a major regulator of the hepatic transcriptome, which defines hepatocellular permissivity to HBV infection. We propose a model where HBV exploits cellular oxygen sensors to replicate and persist in the liver. Understanding oxygen-dependent pathways that regulate HBV infection will facilitate the development of physiologically relevant cell-based models that support efficient HBV replication.


Asunto(s)
Virus de la Hepatitis B , Histona Demetilasas con Dominio de Jumonji , Oxígeno , Replicación Viral , Humanos , ADN Viral/genética , Genoma Viral/genética , Hepatitis B/enzimología , Hepatitis B/metabolismo , Hepatitis B/virología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/crecimiento & desarrollo , Virus de la Hepatitis B/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Hígado/enzimología , Hígado/metabolismo , Hígado/virología , Oxígeno/metabolismo , Plásmidos/genética , Transcriptoma , Replicación Viral/genética
3.
PLoS Pathog ; 20(1): e1011917, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38227578

RESUMEN

Chronic hepatitis B is a global health problem and current treatments only suppress hepatitis B virus (HBV) infection, highlighting the need for new curative treatments. Oxygen levels influence HBV replication and we previously reported that hypoxia inducible factors (HIFs) activate the basal core promoter (BCP). Here we show that the hypoxic-dependent increase in BCP-derived transcripts is dependent on N6-methyladenosine (m6A) modifications in the 5' stem loop that regulate RNA half-life. Application of a probe-enriched long-read sequencing method to accurately map the HBV transcriptome showed an increased abundance of pre-genomic RNA under hypoxic conditions. Mapping the transcription start sites of BCP-RNAs identified a role for hypoxia to regulate pre-genomic RNA splicing that is dependent on m6A modification. Bioinformatic analysis of published single cell RNA-seq of murine liver showed an increased expression of the RNA demethylase ALKBH5 in the peri-central low oxygen region. In vitro studies with a human hepatocyte derived HepG2-NTCP cell line showed increased ALKBH5 gene expression under hypoxic conditions and a concomitant reduction in m6A-modified HBV BCP-RNA and host RNAs. Silencing the demethylase reduced the level of BCP-RNAs and host gene (CA9, NDRG1, VEGFA, BNIP3, FUT11, GAP and P4HA1) transcripts and this was mediated via reduced HIFα expression. In summary, our study highlights a previously unrecognized role for ALKBH5 in orchestrating viral and cellular transcriptional responses to low oxygen.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Animales , Humanos , Ratones , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Fucosiltransferasas/genética , Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Hipoxia , Oxígeno , ARN , Transcriptoma
4.
iScience ; 27(1): 108763, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38261926

RESUMEN

Respiratory syncytial virus (RSV) is a global healthcare problem, causing respiratory illness in young children and elderly individuals. Our knowledge of the host pathways that define susceptibility to infection and disease severity are limited. Hypoxia inducible factors (HIFs) define metabolic responses to low oxygen and regulate inflammatory responses in the lower respiratory tract. We demonstrate a role for HIFs to suppress RSV entry and RNA replication. We show that hypoxia and HIF prolyl-hydroxylase inhibitors reduce the expression of the RSV entry receptor nucleolin and inhibit viral cell-cell fusion. We identify a HIF regulated microRNA, miR-494, that regulates nucleolin expression. In RSV-infected mice, treatment with the clinically approved HIF prolyl-hydroxylase inhibitor, Daprodustat, reduced the level of infectious virus and infiltrating monocytes and neutrophils in the lung. This study highlights a role for HIF-signalling to limit multiple aspects of RSV infection and associated inflammation and informs future therapeutic approaches for this respiratory pathogen.

5.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961409

RESUMEN

Chronic hepatitis B is a global health problem and current treatments only suppress hepatitis B virus (HBV) infection, highlighting the need for new curative treatments. Oxygen levels influence HBV replication and we previously reported that hypoxia inducible factors (HIFs) activate the basal core promoter to transcribe pre-genomic RNA. Application of a probe-enriched long-read sequencing method to map the HBV transcriptome showed an increased abundance of all viral RNAs under low oxygen or hypoxic conditions. Importantly, the hypoxic-associated increase in HBV transcripts was dependent on N6-methyladenosine (m6A) modifications and an m6A DRACH motif in the 5' stem loop of pre-genomic RNA defined transcript half-life under hypoxic conditions. Given the essential role of m6A modifications in the viral transcriptome we assessed the oxygen-dependent expression of RNA demethylases and bioinformatic analysis of published single cell RNA-seq of murine liver showed an increased expression of the RNA demethylase ALKBH5 in the peri-central low oxygen region. In vitro studies with a human hepatocyte derived HepG2 cell line showed increased ALKBH5 gene expression under hypoxic conditions. Silencing the demethylase reduced the levels of HBV pre-genomic RNA and host gene (CA9, NDRG1, VEGFA, BNIP3, FUT11, GAP and P4HA1) transcripts and this was mediated via reduced HIFα expression. In summary, our study highlights a previously unrecognized role for ALKBH5 in orchestrating viral and cellular transcriptional responses to low oxygen.

6.
J Gen Virol ; 104(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37196057

RESUMEN

Hepatitis B virus (HBV) is one of the smallest human DNA viruses and its 3.2 Kb genome encodes multiple overlapping open reading frames, making its viral transcriptome challenging to dissect. Previous studies have combined quantitative PCR and Next Generation Sequencing to identify viral transcripts and splice junctions, however the fragmentation and selective amplification used in short read sequencing precludes the resolution of full length RNAs. Our study coupled an oligonucleotide enrichment protocol with state-of-the-art long read sequencing (PacBio) to identify the repertoire of HBV RNAs. This methodology provides sequencing libraries where up to 25 % of reads are of viral origin and enable the identification of canonical (unspliced), non-canonical (spliced) and chimeric viral-human transcripts. Sequencing RNA isolated from de novo HBV infected cells or those transfected with 1.3 × overlength HBV genomes allowed us to assess the viral transcriptome and to annotate 5' truncations and polyadenylation profiles. The two HBV model systems showed an excellent agreement in the pattern of major viral RNAs, however differences were noted in the abundance of spliced transcripts. Viral-host chimeric transcripts were identified and more commonly found in the transfected cells. Enrichment capture and PacBio sequencing allows the assignment of canonical and non-canonical HBV RNAs using an open-source analysis pipeline that enables the accurate mapping of the HBV transcriptome.


Asunto(s)
Virus de la Hepatitis B , Transcriptoma , Humanos , Virus de la Hepatitis B/genética , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Viral/genética
7.
J Antibiot (Tokyo) ; 76(2): 75-82, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36513753

RESUMEN

Vanitaracin A, an anti-hepatitis B virus polyketide, has been previously isolated from Talaromyces sp. In the present study, we searched for novel compounds in the culture broth obtained from a vanitaracin A-producing fungus under various conditions. Three novel compounds (vanitaracin C, vanitaraphilone A, and 2-hydroxy-4-(hydroxymethyl)-6-methylbenzaldehyde) were isolated, and their structures were determined using spectroscopic methods (1D/2D NMR and MS). In addition, the antiviral spectrum of vanitaracin A was examined by measuring its antiviral activities against rabies virus, Borna disease virus 1, and bovine leukemia virus. This compound exhibited antiviral activity against bovine leukemia virus, which is the causative agent of enzootic bovine leukosis. The anti-bovine leukemia virus effects of other compounds isolated from the vanitaracin A-producing fungus, namely, vanitaracins B and C, vanitaraphilone A, and 2-hydroxy-4-(hydroxymethyl)-6-methylbenzaldehyde, were also evaluated. Vanitaracin B, vanitaraphilone A and 2-hydroxy-4-(hydroxymethyl)-6-methylbenzaldehyde were also found to exhibit activity against bovine leukemia virus. These findings reveal the broad-spectrum antiviral activity of the vanitaracin scaffold and suggest several candidates for the development of anti-bovine leukemia virus drugs.


Asunto(s)
Leucemia , Policétidos , Talaromyces , Animales , Bovinos , Humanos , Antivirales/química , Estructura Molecular , Policétidos/farmacología , Talaromyces/química
8.
J Virol ; 95(24): e0093821, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34613794

RESUMEN

Sodium taurocholate cotransporting polypeptide (NTCP) is a receptor that is essential for hepatitis B virus (HBV) entry into the host cell. A number of HBV entry inhibitors targeting NTCP have been reported to date; these inhibitors have facilitated a mechanistic analysis of the viral entry process. However, the mechanism of HBV internalization into host cells after interaction of virus with NTCP remains largely unknown. Recently, we reported that troglitazone, a thiazolidinedione derivative, specifically inhibits both HBV internalization and NTCP oligomerization, resulting in inhibition of HBV infection. Here, using troglitazone as a chemical probe to investigate entry process, the contribution of NTCP oligomerization to HBV internalization was evaluated. Using surface plasmon resonance and transporter kinetics, we found that troglitazone directly interacts with NTCP and noncompetitively interferes with NTCP-mediated bile acid uptake, suggesting that troglitazone allosterically binds to NTCP, rather than to the bile acid-binding pocket. Additionally, alanine scanning mutagenesis showed that a mutation at phenylalanine 274 of NTCP (F274A) caused a loss of HBV susceptibility and disrupted both the oligomerization of NTCP and HBV internalization without affecting viral attachment to the cell surface. An inhibitor of the interaction between NTCP and epidermal growth factor receptor (EGFR), another host cofactor essential for HBV internalization, impeded NTCP oligomerization. Meanwhile, coimmunoprecipitation analysis revealed that neither troglitazone nor the F274A mutation in NTCP affects the NTCP-EGFR interaction. These findings suggest that NTCP oligomerization is initiated downstream of the NTCP-EGFR interaction and then triggers HBV internalization. This study provides significant insight into the HBV entry mechanisms. IMPORTANCE Hepatitis B virus (HBV) infection is mediated by a specific interaction with sodium taurocholate cotransporting polypeptide (NTCP), a viral entry receptor. Although the virus-receptor interactions are believed to trigger viral internalization into host cells, the exact molecular mechanisms of HBV internalization are not understood. In this study, we revealed the mode of action whereby troglitazone, a specific inhibitor of HBV internalization, impedes NTCP oligomerization and identified NTCP phenylalanine 274 as a residue essential for this oligomerization. We further analyzed the association between NTCP oligomerization and HBV internalization, a process that is mediated by epidermal growth factor receptor (EGFR), another essential host cofactor for HBV internalization. Our study provides critical information on the mechanism of HBV entry and suggests that oligomerization of the viral receptor serves as an attractive target for drug discovery.


Asunto(s)
Virus de la Hepatitis B/fisiología , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Multimerización de Proteína , Receptores Virales/metabolismo , Simportadores/metabolismo , Internalización del Virus/efectos de los fármacos , Transporte Biológico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genética , Troglitazona/farmacología , Acoplamiento Viral/efectos de los fármacos
9.
iScience ; 24(10): 103144, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34545347

RESUMEN

The coronavirus disease 2019 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract via spike glycoprotein binding to angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organism's response to its environment and can regulate host susceptibility to virus infection. We demonstrate that silencing the circadian regulator Bmal1 or treating lung epithelial cells with the REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry and replication. Importantly, treating infected cells with SR9009 limits SARS-CoV-2 replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced interferon-stimulated gene transcripts in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to limit SARS-CoV-2 infection. Our study highlights alternative approaches to understand and improve therapeutic targeting of SARS-CoV-2.

10.
Cell Rep ; 35(3): 109020, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33852916

RESUMEN

COVID-19, caused by the novel coronavirus SARS-CoV-2, is a global health issue with more than 2 million fatalities to date. Viral replication is shaped by the cellular microenvironment, and one important factor to consider is oxygen tension, in which hypoxia inducible factor (HIF) regulates transcriptional responses to hypoxia. SARS-CoV-2 primarily infects cells of the respiratory tract, entering via its spike glycoprotein binding to angiotensin-converting enzyme 2 (ACE2). We demonstrate that hypoxia and the HIF prolyl hydroxylase inhibitor Roxadustat reduce ACE2 expression and inhibit SARS-CoV-2 entry and replication in lung epithelial cells via an HIF-1α-dependent pathway. Hypoxia and Roxadustat inhibit SARS-CoV-2 RNA replication, showing that post-entry steps in the viral life cycle are oxygen sensitive. This study highlights the importance of HIF signaling in regulating multiple aspects of SARS-CoV-2 infection and raises the potential use of HIF prolyl hydroxylase inhibitors in the prevention or treatment of COVID-19.


Asunto(s)
COVID-19/metabolismo , Células Epiteliales/metabolismo , Glicina/análogos & derivados , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isoquinolinas/farmacología , Pulmón/metabolismo , SARS-CoV-2/fisiología , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Células A549 , Animales , COVID-19/patología , Células CACO-2 , Hipoxia de la Célula/efectos de los fármacos , Chlorocebus aethiops , Células Epiteliales/virología , Glicina/farmacología , Humanos , Pulmón/virología , Ratones , Células Vero , Tratamiento Farmacológico de COVID-19
11.
bioRxiv ; 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33758862

RESUMEN

The COVID-19 pandemic, caused by SARS-CoV-2 coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract, via Spike glycoprotein binding angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organism’s response to its environment and can regulate host susceptibility to virus infection. We demonstrate a circadian regulation of ACE2 in lung epithelial cells and show that silencing BMAL1 or treatment with a synthetic REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry. Treating infected cells with SR9009 limits viral replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced a wide spectrum of interferon stimulated genes in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to dampen SARS-CoV-2 infection. Our study suggests new approaches to understand and improve therapeutic targeting of SARS-CoV-2.

12.
Nat Commun ; 12(1): 1658, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712578

RESUMEN

Chronic hepatitis B virus (HBV) infection is a major cause of liver disease and cancer worldwide for which there are no curative therapies. The major challenge in curing infection is eradicating or silencing the covalent closed circular DNA (cccDNA) form of the viral genome. The circadian factors BMAL1/CLOCK and REV-ERB are master regulators of the liver transcriptome and yet their role in HBV replication is unknown. We establish a circadian cycling liver cell-model and demonstrate that REV-ERB directly regulates NTCP-dependent hepatitis B and delta virus particle entry. Importantly, we show that pharmacological activation of REV-ERB inhibits HBV infection in vitro and in human liver chimeric mice. We uncover a role for BMAL1 to bind HBV genomes and increase viral promoter activity. Pharmacological inhibition of BMAL1 through REV-ERB ligands reduces pre-genomic RNA and de novo particle secretion. The presence of conserved E-box motifs among members of the Hepadnaviridae family highlight an evolutionarily conserved role for BMAL1 in regulating this family of small DNA viruses.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Virus de la Hepatitis B/fisiología , Replicación Viral/fisiología , Animales , Relojes Biológicos/efectos de los fármacos , Relojes Biológicos/genética , Ritmo Circadiano/genética , ADN Circular , ADN Viral/metabolismo , Regulación de la Expresión Génica , Genoma Viral , Células Hep G2 , Hepatitis B/virología , Virus de la Hepatitis B/genética , Hepatitis B Crónica/genética , Hepatocitos/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Hígado/metabolismo , Ratones , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Regiones Promotoras Genéticas , Simportadores/metabolismo , Transcriptoma , Virión/metabolismo , Internalización del Virus
13.
Hepatology ; 73(2): 520-532, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32446278

RESUMEN

BACKGROUND AND AIMS: An efficient cell-culture system for hepatitis B virus (HBV) is indispensable for research on viral characteristics and antiviral reagents. Currently, for the HBV infection assay in cell culture, viruses derived from HBV genome-integrated cell lines of HepG2.2.15 or HepAD-38 are commonly used. However, these viruses are not suitable for the evaluation of polymorphism-dependent viral characteristics or resistant mutations against antiviral reagents. HBV obtained by the transient transfection of the ordinary HBV molecular clone has limited infection efficiencies in cell culture. APPROACH AND RESULTS: We found that an 11-amino-acid deletion (d11) in the preS1 region enhances the infectivity of cell-culture-generated HBV (HBVcc) to sodium taurocholate cotransporting polypeptide-transduced HepG2 (HepG2/NTCP) cells. Infection of HBVcc derived from a d11-introduced genotype C strain (GTC-d11) was ~10-fold more efficient than infection of wild-type GTC (GTC-wt), and the number of infected cells was comparable between GTC-d11- and HepG2.2.15-derived viruses when inoculated with the same genome equivalents. A time-dependent increase in pregenomic RNA and efficient synthesis of covalently closed circular DNA were detected after infection with the GTC-d11 virus. The involvement of d11 in the HBV large surface protein in the enhanced infectivity was confirmed by an HBV reporter virus and hepatitis D virus infection system. The binding step of the GTC-d11 virus onto the cell surface was responsible for this efficient infection. CONCLUSIONS: This system provides a powerful tool for studying the infection and propagation of HBV in cell culture and also for developing the antiviral strategy against HBV infection.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/patogenicidad , Hepatitis B/virología , Precursores de Proteínas/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Evaluación Preclínica de Medicamentos/métodos , Células Hep G2 , Hepatitis B/tratamiento farmacológico , Hepatitis B/patología , Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Humanos , Precursores de Proteínas/genética
14.
Sci Rep ; 10(1): 20763, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247161

RESUMEN

Hepatitis B virus (HBV) is the major causative factor of chronic viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. We previously demonstrated that a proinflammatory cytokine IL-1ß reduced the level of HBV RNA. However, the mechanism underlying IL-1ß-mediated viral RNA reduction remains incompletely understood. In this study, we report that immune regulator Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) can reduce HBV RNA in hepatocytes. MCPIP1 expression level was higher in the liver tissue of HBV-infected patients and mice. Overexpression of MCPIP1 decreased HBV RNA, whereas ablating MCPIP1 in vitro enhanced HBV production. The domains responsible for RNase activity or oligomerization, were required for MCPIP1-mediated viral RNA reduction. The epsilon structure of HBV RNA was important for its antiviral activity and cleaved by MCPIP1 in the cell-free system. Lastly, knocking out MCPIP1 attenuated the anti-HBV effect of IL-1ß, suggesting that MCPIP1 is required for IL-1ß-mediated HBV RNA reduction. Overall, these results suggest that MCPIP1 may be involved in the antiviral effect downstream of IL-1ß.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/tratamiento farmacológico , Interacciones Huésped-Patógeno , Interleucina-1beta/farmacología , ARN Viral/química , Replicación Viral , Animales , Células Hep G2 , Hepatitis B/metabolismo , Hepatitis B/virología , Humanos , Ratones , ARN Viral/efectos de los fármacos , ARN Viral/metabolismo , Ribonucleasas/genética , Factores de Transcripción/genética
15.
Antiviral Res ; 182: 104925, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32866519

RESUMEN

Hepatitis B virus (HBV) specifically infects hepatocytes and causes severe liver diseases. The HBV life cycle is unique in that the genomic DNA (relaxed-circular partially double-stranded DNA: rcDNA) is converted to a molecular template DNA (covalently closed circular DNA: cccDNA) to amplify a viral RNA intermediate, which is then reverse-transcribed back to viral DNA. The highly stable characteristics of cccDNA result in chronic infection and a poor rate of cure. This complex life cycle of HBV offers a variety of targets to develop antiviral agents. We provide here an update on the current knowledge of HBV biology and its life cycle, which may help to identify new antiviral targets.


Asunto(s)
Virus de la Hepatitis B/crecimiento & desarrollo , Hepatocitos/virología , Replicación Viral , Antivirales/uso terapéutico , ADN Viral/genética , Células Hep G2 , Hepatitis B/tratamiento farmacológico , Hepatitis B/virología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/patogenicidad , Interacciones Microbiota-Huesped , Humanos
16.
J Gastroenterol ; 55(4): 441-452, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31768802

RESUMEN

BACKGROUND: Hepatitis B virus (HBV) polymerase is the only virus-encoded enzyme essential for producing the HBV genome and is regarded as an attractive drug target. However, the difficulty of synthesizing and purifying recombinant HBV polymerase protein has hampered the development of new drugs targeting this enzyme, especially compounds unrelated to the nucleoside structure. We recently have developed a technique for the synthesis and purification of recombinant HBV polymerase containing the reverse transcriptase (RT) domain that carried DNA elongation activity in vitro. METHODS: We used the overproduced protein to establish an in vitro high-throughput screening system to identify compounds that inhibit the elongation activity of HBV polymerase. RESULTS: We screened 1120 compounds and identified a stilbene derivative, piceatannol, as a potential anti-HBV agent. Derivative analysis identified another stilbene derivative, PDM2, that was able to inhibit HBV replication with an IC50 of 14.4 ± 7.7 µM. An infection experiment suggested that the compounds inhibit the replication of HBV rather than the entry process, as expected. Surface plasmon resonance analysis demonstrated a specific interaction between PDM2 and the RT domain. Importantly, PDM2 showed similar inhibitory activity against the replication of both wild-type HBV and a lamivudine/entecavir-resistant HBV variant. Furthermore, PDM2 showed an additive effect in combination with clinically used nucleos(t)ide analogs. CONCLUSIONS: We report the development of a screening system that is useful for identifying non-nucleos(t)ide RT inhibitors.


Asunto(s)
ADN Viral/biosíntesis , Virus de la Hepatitis B/enzimología , ADN Polimerasa Dirigida por ARN/biosíntesis , Inhibidores de la Transcriptasa Inversa/farmacología , Replicación Viral/efectos de los fármacos , Antivirales , Evaluación Preclínica de Medicamentos/métodos , Farmacorresistencia Viral , Guanina/análogos & derivados , Células Hep G2 , Humanos , Técnicas In Vitro , Concentración 50 Inhibidora , Lamivudine , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Recombinantes , Estilbenos/farmacología
17.
Hepatology ; 71(5): 1533-1545, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31529730

RESUMEN

BACKGROUND AND AIMS: Current treatment with nucleos(t)ide analogs (NUCs) safely controls the replication of hepatitis B virus (HBV) and improves prognosis in patients with HBV. However, the inability to completely clear HBV is problematic, and novel therapies are desired. It has been believed that all NUCs have similar functions to inhibit HBV reverse transcriptase. However, our recent findings that only acyclic nucleoside phosphonates (ANPs; adefovir dipivoxil and tenofovir disoproxil fumarate) had an additional effect of inducing interferon (IFN)-λ3 in the gastrointestinal tract suggests that ANPs are not only distinct from nucleoside analogs (lamivudine and entecavir) in their structures but also in their functions. Because enteric lipopolysaccharide (LPS) can cross the intestine and affect peripheral blood mononuclear cells (PBMCs), we hypothesized that orally administered ANPs could have further additional effects to modulate LPS-mediated cytokine profile in PBMCs. APPROACH AND RESULTS: This study showed that pretreatment of PBMCs, from either healthy volunteers or patients with HBV, with ANPs inhibited LPS-mediated interleukin (IL)-10 production, which reciprocally induced IL-12p70 and tumor necrosis factor-α production in a dose-dependent manner. Furthermore, the combination of IFN-α and ANPs synergistically enhanced LPS-mediated IL-12p70 production in PBMCs. Mechanistic analyses revealed that cellular metabolites of ANPs directly bound the Akt protein, inhibiting its translocation to the plasma membrane, thereby impairing Akt phosphorylation. Therefore, pretreatment of PBMCs with ANPs impairs LPS-mediated IL-10 production. CONCLUSIONS: Among NUCs, only ANPs have an additional pharmacological effect modulating LPS-mediated cytokine production, which is expected to produce favorable immune responses toward HBV elimination. This additional immunomodulation by ANPs in PBMCs, as well as IFN-λ3 induction in the gastrointestinal tract, provides insights into HBV treatment.


Asunto(s)
Adenina/análogos & derivados , Antivirales/uso terapéutico , Hepatitis B Crónica/tratamiento farmacológico , Inmunomodulación/efectos de los fármacos , Organofosfonatos/uso terapéutico , Tenofovir/uso terapéutico , Adenina/farmacología , Adenina/uso terapéutico , Adulto , Anciano , Antivirales/farmacología , Femenino , Guanina/análogos & derivados , Guanina/uso terapéutico , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B Crónica/inmunología , Humanos , Interferón-alfa/uso terapéutico , Interleucina-10/antagonistas & inhibidores , Interleucina-12/antagonistas & inhibidores , Lamivudine/uso terapéutico , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Lipopolisacáridos/inmunología , Masculino , Nucleósidos/farmacología , Nucleósidos/uso terapéutico , Organofosfonatos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tenofovir/farmacología
18.
Hepatol Res ; 50(3): 283-291, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31756766

RESUMEN

AIM: Interferon (IFN)-λ3 is known to have antiviral effects against various pathogens. Recently, it has been reported that the production of IFN-λ3 in colon cells after the administration of nucleotide analogs is expected to reduce hepatitis B surface antigen in chronic hepatitis B patients. Here, we aimed to prove the antiviral effects of IFN-λ3 on hepatitis B virus (HBV) by using an in vitro HBV production and infection system. METHODS: We used HepG2.2.15-derived HBV as an inoculum and the replication-competent molecular clone of HBV as a replication model. RESULTS: By administering IFN-λ3 to HepG2 cells transfected with the HBV molecular clone, the production of hepatitis B surface antigen and hepatitis B core-related antigen was reduced dose-dependently. IFN-λ3 treatment also reduced the number of HBV-positive cells and the synthesis of covalently closed circular DNA after infection of HepG2.2.15-derived HBV to sodium taurocholate cotransporting polypeptide-transduced HepG2 cells. The inhibitory effect on HBV infection by IFN-λ3 was confirmed by using a recombinant a HBV reporter virus system. To elucidate the underlying mechanisms of the anti-HBV effect of IFN-λ3, we assessed the transcription of HBV RNA and the production of core-associated HBV DNA in HBV molecular clone-transfected HepG2 cells, and found that both parameters were reduced by IFN-λ3. CONCLUSIONS: We observed that the administration of IFN-λ3 inhibits HBV infection and the production of HBV proteins at the HBV RNA transcription level. This finding provides novel insight into the treatment of chronic hepatitis B patients with the administration or induction of IFN-λ3.

19.
Bioorg Med Chem ; 27(23): 115149, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31679979

RESUMEN

Pyrenocine A, a phytotoxin, was found to exhibit cytotoxicity against cancer cells with an IC50 value of 2.6-12.9 µM. Live cell imaging analysis revealed that pyrenocine A arrested HeLa cells at the M phase with characteristic ring-shaped chromosomes. Furthermore, as a result of immunofluorescence staining analysis, we found that pyrenocine A resulted in the formation of monopolar spindles in HeLa cells. Monopolar spindles are known to be induced by inhibitors of the kinesin motor protein Eg5 such as monastrol and STLC. Monastrol and STLC induce monopolar spindle formation and M phase arrest via inhibition of the ATPase activity of Eg5. Interestingly, our data revealed that pyrenocine A had no effect on the ATPase activity of Eg5 in vitro, which suggested the compound induces a monopolar spindle by an unknown mechanism. Structure-activity relationship analysis indicates that the enone structure of pyrenocine A is likely to be important for its cytotoxicity. An alkyne-tagged analog of pyrenocine A was synthesized and suppressed proliferation of HeLa cells with an IC50 value of 2.3 µM. We concluded that pyrenocine A induced monopolar spindle formation by a novel mechanism other than direct inhibition of Eg5 motor activity, and the activity of pyrenocine A may suggest a new anticancer mechanism.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Huso Acromático/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células HeLa , Humanos , Neoplasias/tratamiento farmacológico , Pirimidinas/farmacología , Pironas/farmacología , Tionas/farmacología
20.
Semin Liver Dis ; 39(1): 78-85, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30809790

RESUMEN

Identification of sodium taurocholate cotransporting polypeptide (NTCP) as an entry receptor for hepatitis B and D viruses (HBV and HDV) has not only promoted our understanding of the mechanism underlying the viral entry process, but also provided cell culture models supporting viral infection. These models have greatly facilitated cell-based chemical screening for the discovery of entry inhibitors, and mode of action studies using such inhibitors have shown the advantages of NTCP as a drug target. Furthermore, in vitro chemical screening by application of high-throughput affinity-based technologies that target NTCP has identified a variety of unique small molecules that interfere with viral entry. This review summarizes this hot topic in the development of HBV/HDV entry inhibitors, with special focus on the use of NTCP as a drug target.


Asunto(s)
Antivirales/farmacología , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Internalización del Virus/efectos de los fármacos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis Delta/genética , Virus de la Hepatitis Delta/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA