Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Commun Biol ; 7(1): 736, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890483

RESUMEN

Organ fibrosis causes collagen fiber overgrowth and impairs organ function. Cardiac fibrosis after myocardial infarction impairs cardiac function significantly, pulmonary fibrosis reduces gas exchange efficiency, and liver fibrosis disturbs the natural function of the liver. Its development is associated with the differentiation of fibroblasts into myofibroblasts and increased collagen synthesis. Fibrosis has organ specificity, defined by the heterogeneity of fibroblasts. Although this heterogeneity is established during embryonic development, it has not been defined yet. Fibroblastic differentiation of induced pluripotent stem cells (iPSCs) recapitulates the process by which fibroblasts acquire diversity. Here, we differentiated iPSCs into cardiac, hepatic, and dermal fibroblasts and analyzed their properties using single-cell RNA sequencing. We observed characteristic subpopulations with different ratios in each organ-type fibroblast group, which contained both resting and distinct ACTA2+ myofibroblasts. These findings provide crucial information on the ontogeny-based heterogeneity of fibroblasts, leading to the development of therapeutic strategies to control fibrosis.


Asunto(s)
Diferenciación Celular , Fibroblastos , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/citología , Células Cultivadas , Análisis de la Célula Individual , Fibrosis
2.
Inflamm Regen ; 43(1): 62, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093386
3.
Inflamm Regen ; 43(1): 56, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964383

RESUMEN

BACKGROUND: Because of its poor intrinsic repair capacity, articular cartilage seldom heals when damaged. MAIN BODY: Regenerative treatment is expected for the treatment of articular cartilage damage, and allogeneic chondrocytes or cartilage have an advantage over autologous chondrocytes, which are limited in number. However, the presence or absence of an immune response has not been analyzed and remains controversial. Allogeneic-induced pluripotent stem cell (iPSC)-derived cartilage, a new resource for cartilage regeneration, reportedly survived and integrated with native cartilage after transplantation into chondral defects in knee joints without immune rejection in a recent primate model. Here, we review and discuss the immunogenicity of chondrocytes and the efficacy of allogeneic cartilage transplantation, including iPSC-derived cartilage. SHORT CONCLUSION: Allogeneic iPSC-derived cartilage transplantation, a new therapeutic option, could be a good indication for chondral defects, and the development of translational medical technology for articular cartilage damage is expected.

4.
NPJ Regen Med ; 8(1): 59, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857652

RESUMEN

Both mesenchymal stromal cells (MSC) and induced pluripotent stem cells (iPSC) offer the potential for repair of damaged connective tissues. The use of hybrid implants containing both human MSC and iPSC was investigated to assess their combined potential to yield enhanced repair of osteochondral defects. Human iPSC-CP wrapped with tissue engineered constructs (TEC) containing human MSC attained secure defect filling with good integration to adjacent tissue in a rat osteochondral injury model. The presence of living MSC in the hybrid implants was required for effective biphasic osteochondral repair. Thus, the TEC component of such hybrid implants serves several critical functions including, adhesion to the defect site via the matrix and facilitation of the repair via live MSC, as well as enhanced angiogenesis and neovascularization. Based on these encouraging studies, such hybrid implants may offer an effective future intervention for repair of complex osteochondral defects.

5.
Front Cell Dev Biol ; 11: 1151947, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255604

RESUMEN

Objective: The nucleus pulposus (NP) comprises notochordal NP cells (NCs) and chondrocyte-like NP cells (CLCs). Although morphological similarities between CLCs and chondrocytes have been reported, interactions between CLCs and NCs remain unclear. In this study, we aimed to clarify regulatory mechanisms of cells in the NP and chondrocytes. Design: We performed single-cell RNA sequencing (scRNA-seq) analysis of the articular cartilage (AC) and NP of three-year-old cynomolgus monkeys in which NCs were present. We then performed immunohistochemical analysis of NP and distal femur. We added sonic hedgehog (SHH) to primary chondrocyte culture. Results: The scRNA-seq analysis revealed that CLCs and some articular chondrocytes had similar gene expression profiles, particularly related to GLI1, the nuclear mediator of the hedgehog pathway. In the NP, cell-cell interaction analysis revealed SHH expression in NCs, resulting in hedgehog signaling to CLCs. In contrast, no hedgehog ligands were expressed by chondrocytes in AC samples. Immunohistochemical analysis of the distal end of femur indicated that SHH and Indian hedgehog (IHH) were expressed around the subchondral bone that was excluded from our scRNA-seq sample. scRNA-seq data analysis and treatment of primary chondrocytes with SHH revealed that hedgehog proteins mediated an increase in hypoxia-inducible factor 1-alpha (HIF-1α) levels. Conclusion: CLCs and some articular chondrocytes have similar transcriptional profiles, regulated by paracrine hedgehog proteins secreted from NCs in the NP and from the subchondral bone in the AC to promote the HIF-1α pathway.

6.
Nat Commun ; 14(1): 804, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36808132

RESUMEN

Induced pluripotent stem cells (iPSCs) are a promising resource for allogeneic cartilage transplantation to treat articular cartilage defects that do not heal spontaneously and often progress to debilitating conditions, such as osteoarthritis. However, to the best of our knowledge, allogeneic cartilage transplantation into primate models has never been assessed. Here, we show that allogeneic iPSC-derived cartilage organoids survive and integrate as well as are remodeled as articular cartilage in a primate model of chondral defects in the knee joints. Histological analysis revealed that allogeneic iPSC-derived cartilage organoids in chondral defects elicited no immune reaction and directly contributed to tissue repair for at least four months. iPSC-derived cartilage organoids integrated with the host native articular cartilage and prevented degeneration of the surrounding cartilage. Single-cell RNA-sequence analysis indicated that iPSC-derived cartilage organoids differentiated after transplantation, acquiring expression of PRG4 crucial for joint lubrication. Pathway analysis suggested the involvement of SIK3 inactivation. Our study outcomes suggest that allogeneic transplantation of iPSC-derived cartilage organoids may be clinically applicable for the treatment of patients with chondral defects of the articular cartilage; however further assessment of functional recovery long term after load bearing injuries is required.


Asunto(s)
Cartílago Articular , Trasplante de Células Madre Hematopoyéticas , Células Madre Pluripotentes Inducidas , Animales , Cartílago Articular/patología , Primates , Organoides , Condrocitos
7.
DNA Res ; 29(3)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35652718

RESUMEN

Recent advances in single-cell analysis technology have made it possible to analyse tens of thousands of cells at a time. In addition, sample multiplexing techniques, which allow the analysis of several types of samples in a single run, are very useful for reducing experimental costs and improving experimental accuracy. However, a problem with this technique is that antigens and antibodies for universal labelling of various cell types may not be fully available. To overcome this issue, we developed a universal labelling technique, Universal Surface Biotinylation (USB), which does not depend on specific cell surface proteins. By introducing biotin into the amine group of any cell surface protein, we have obtained good labelling results in all the cell types we have tested. Combining with DNA-tagged streptavidin, it is possible to label each cell sample with specific DNA 'hashtag'. Compared with the conventional cell hashing method, the USB procedure seemed to have no discernible adverse effect on the acquisition of the transcriptome in each cell, according to the model experiments using differentiating mouse embryonic stem cells. This method can be theoretically used for any type of cells, including cells to which the conventional cell hashing method has not been applied successfully.


Asunto(s)
Biotina , Animales , Biotinilación , Análisis Costo-Beneficio , Ratones , Análisis de Secuencia de ARN , Estreptavidina
8.
Biomaterials ; 284: 121491, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395453

RESUMEN

The loss of nucleus pulposus (NP) precedes the intervertebral disk (IVD) degeneration that causes back pain. Here, we demonstrate that the implantation of human iPS cell-derived cartilaginous tissue (hiPS-Cart) restores this loss by replacing lost NP spatially and functionally. NP cells consist of notochordal NP cells and chondrocyte-like NP cells. Single cell RNA sequencing (scRNA-seq) analysis revealed that cells in hiPS-Cart corresponded to chondrocyte-like NP cells but not to notochordal NP cells. The implantation of hiPS-Cart into a nuclectomized space of IVD in nude rats prevented the degeneration of the IVD and preserved its mechanical properties. hiPS-Cart survived and occupied the nuclectomized space for at least six months after implantation, indicating spatial and functional replacement of lost NP by hiPS-Cart. Further scRNA-seq analysis revealed that hiPS-Cart cells changed their profile after implantation, differentiating into two lineages that are metabolically distinct from each other. However, post-implanted hiPS-Cart cells corresponded to chondrocyte-like NP cells only and did not develop into notochordal NP cells, suggesting that chondrocyte-like NP cells are nearly sufficient for NP function. The data collectively indicate that hiPS-Cart is a candidate implant for regenerating NP spatially and functionally and preventing IVD degeneration.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animales , Cartílago , Humanos , Degeneración del Disco Intervertebral/terapia , Ratas , Regeneración
9.
Tissue Eng Part A ; 28(1-2): 94-106, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34182799

RESUMEN

Due to the poor capacity for articular cartilage to regenerate, its damage tends to result in progressively degenerating conditions such as osteoarthritis. To repair the damage, the transplantation of allogeneic human induced pluripotent stem cell (iPSC)-derived cartilage is being considered. However, although allogeneic cartilage transplantation is effective, immunological reactions can occur. One hypothetical solution is to delete the expression of major histocompatibility complex (MHC) class I molecules to reduce the immunological reactions. For this purpose, we deleted the ß2 microglobulin (B2M) gene in a cynomolgus monkey (crab-eating monkey [Macaca fascicularis]) iPS cells (cyiPSCs) to obtain B2M-/- cyiPSCs using the CRISPR/Cas9 system. Western blot analysis confirmed B2M-/- cyiPSCs lacked B2M protein, which is necessary for MHC class I molecules to be transported to and expressed on the cell surface by forming multimers with B2M. Flow cytometry analysis revealed no B2M-/- cyiPSCs expressed MHC class I molecules on their surface. The transplantation of B2M-/- cyiPSCs in immunodeficient mice resulted in teratoma that contained cartilage, indicating that the lack of MHC class I molecules on the cell surface affects neither the pluripotency nor the chondrogenic differentiation capacity of cyiPSCs. By modifying the chondrogenic differentiation protocol for human iPSCs, we succeeded at differentiating B2M+/+ and B2M-/- cyiPSCs toward chondrocytes followed by cartilage formation in vitro, as indicated by histological analysis showing that B2M+/+ and B2M-/- cyiPSC-derived cartilage were positively stained with safranin O and expressed type II collagen. Flow cytometry analysis confirmed that MHC class I molecules were not expressed on the cell surface of B2M-/- chondrocytes isolated from B2M-/- cyiPSC-derived cartilage. An in vitro mixed lymphocyte reaction assay showed that neither B2M+/+ nor B2M-/- cyiPSC-derived cartilage cells stimulated the proliferation of allogeneic peripheral blood mononuclear cells. On the contrary, osteochondral defects in monkey knee joints that received allogeneic transplantations of cyiPSC-derived cartilage showed an accumulation of leukocytes with more natural killer cells around B2M-/- cyiPSC-derived cartilage than B2M+/+ cartilage, suggesting complex mechanisms in the immune reaction of allogeneic cartilage transplanted in osteochondral defects in vivo. Impact statement The transplantation of allogeneic induced pluripotent stem cell (iPSC)-derived cartilage is expected to treat articular cartilage damage, although the effects of major histocompatibility complex (MHC) in immunological reactions have not been well studied. We succeeded at creating B2M-/- cynomolgus monkey (cy)iPSCs and cyiPSC-derived cartilage that lack MHC class I molecules on the cell surface. B2M-/- cyiPSC-derived cartilage cells did not stimulate the proliferation of allogeneic peripheral blood mononuclear cells in vitro. On the contrary, the transplantation of B2M-/- cyiPSC-derived cartilage into osteochondral defects in monkey knee joints resulted in survival of transplants and accumulation of leukocytes, including natural killer cells, suggesting complex mechanisms for the immune reaction.


Asunto(s)
Cartílago Articular , Células Madre Pluripotentes Inducidas , Animales , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Leucocitos Mononucleares , Macaca fascicularis , Complejo Mayor de Histocompatibilidad , Ratones
10.
Stem Cell Res Ther ; 12(1): 513, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563248

RESUMEN

BACKGROUND: Bones have a remarkable capacity to heal upon fracture. Yet, in large defects or compromised conditions healing processes become impaired, resulting in delayed or non-union. Current therapeutic approaches often utilize autologous or allogeneic bone grafts for bone augmentation. However, limited availability of these tissues and lack of predictive biological response result in limitations for clinical demands. Tissue engineering using viable cell-based implants is a strategic approach to address these unmet medical needs. METHODS: Herein, the in vitro and in vivo cartilage and bone tissue formation potencies of human pluripotent stem cells were investigated. The induced pluripotent stem cells were specified towards the mesodermal lineage and differentiated towards chondrocytes, which subsequently self-assembled into cartilaginous organoids. The tissue formation capacity of these organoids was then challenged in an ectopic and orthotopic bone formation model. RESULTS: The derived chondrocytes expressed similar levels of collagen type II as primary human articular chondrocytes and produced stable cartilage when implanted ectopically in vivo. Upon targeted promotion towards hypertrophy and priming with a proinflammatory mediator, the organoids mediated successful bridging of critical size long bone defects in immunocompromised mice. CONCLUSIONS: These results highlight the promise of induced pluripotent stem cell technology for the creation of functional cartilage tissue intermediates that can be explored for novel bone healing strategies.


Asunto(s)
Organoides , Células Madre Pluripotentes , Animales , Huesos , Cartílago , Condrocitos , Condrogénesis , Humanos , Ratones , Ingeniería de Tejidos
11.
Tissue Eng Part A ; 27(21-22): 1355-1367, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33567995

RESUMEN

Although bone has an innate capacity for repair, clinical situations such as comminuted fracture, open fracture, or the surgical resection of bone tumors produce critical-sized bone defects that exceed the capacity and require external intervention. Initiating endochondral ossification (EO) by the implantation of a cartilaginous template into the bone defect is a relatively new approach to cure critical-sized bone defects. The combination of chondrogenically primed mesenchymal stromal/stem cells and artificial scaffolds has been the most extensively studied approach for inducing endochondral bone formation in bone defects. In this study, we prepared cartilage (human-induced pluripotent stem [hiPS]-Cart) from hiPS cells (hiPSCs) in a scaffoldless manner and implanted hiPS-Cart into 3.5 mm large defects created in the femurs of immunodeficient mice to examine the repair capacity. For the control, nothing was implanted into the defects. The implantation of hiPS-Cart significantly induced more new bone in the defect compared with the control. Culture periods for the chondrogenic differentiation of hiPSCs significantly affected the speed of bone induction, with less time resulting in faster bone formation. Histological analysis revealed that hiPS-Cart induced new bone formation in a manner resembling EO of the secondary ossification center, with the cartilage canal, which extended from the periphery to the center of hiPS-Cart, initially forming in unmineralized cartilage, followed by chondrocyte hypertrophy at the center. In the newly formed bone, the majority of osteocytes, osteoblasts, and adipocytes expressed human nuclear antigen (HNA), suggesting that these types of cells mainly derived from the perichondrium of hiPS-Cart. Osteoclasts and blood vessel cells did not express HNA and thus were mouse. Finally, integration between the newly formed bone and mouse femur was attained substantially. Although hiPS-Cart induced new bone that filled bone defects, the newly formed bone, which is a hybrid of human and mouse, had not remodeled to mature bone within the observation period of this study (28 weeks). Impact statement Although bone has an innate capacity for repair, critical-sized bone defects that exceed the capacity require external intervention. We prepared cartilage (human-induced pluripotent stem [hiPS]-Cart) from hiPS cells (hiPSCs) in a scaffoldless manner and examined whether implantation of hiPS-Cart heals critical-sized defects created in the femurs of immunodeficient mice. The implantation of hiPS-Cart induced new bone in the defect in a manner resembling endochondral bone formation of the secondary ossification center. Although hiPS-Cart induced new bone that filled bone defects, the newly formed bone, which is a hybrid of human and mouse, had not remodeled to mature bone within the observation period of this study (28 weeks).


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Animales , Cartílago , Diferenciación Celular , Condrogénesis , Humanos , Ratones
12.
Dev Growth Differ ; 63(1): 72-81, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33411345

RESUMEN

Focal articular cartilage damage can eventually lead to the onset of osteoarthritis with degradation around healthy articular cartilage. Currently, there are no drugs available that effectively repair articular cartilage damage. Several surgical techniques exist and are expected to prevent progression to osteoarthritis, but they do not offer a long-term clinical solution. Recently, regenerative medicine approaches using human pluripotent stem cells (PSCs) have gained attention as new cell sources for therapeutic products. To translate PSCs to clinical application, appropriate cultures that produce large amounts of chondrocytes and hyaline cartilage are needed. So too are assays for the safety and efficacy of the cellular materials in preclinical studies including animal transplantation models. To confirm safety and efficacy, transplantation into the subcutaneous space and articular cartilage defects have been performed in animal models. All but one study we reviewed that transplanted PSC-derived cellular products into articular cartilage defects found safe and effective recovery. However, for most of those studies, the quality of the PSCs was not verified, and the evaluations were done with small animals over short observation periods. Large animals and longer observation times are preferred. We will discuss the recent progress and future direction of the animal transplantation studies for the treatment of focal articular cartilage damages using PSCs.


Asunto(s)
Cartílago Articular/metabolismo , Células Madre Pluripotentes/citología , Trasplante de Células Madre , Animales , Cartílago Articular/patología , Trasplante Autólogo
13.
Stem Cells Transl Med ; 10(1): 115-127, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32822104

RESUMEN

Human induced pluripotent stem cells (hiPSCs) are a promising cell source for the creation of cartilage to treat articular cartilage damage. The molecular mechanisms that translate culture conditions to the chondrogenic differentiation of hiPSCs remain to be analyzed. To analyze the effects of culture substrates, we chondrogenically differentiated hiPSCs on Matrigel or laminin 511-E8 while holding the composition of the chondrogenic medium constant. Cartilage was formed from hiPSCs on Matrigel, but not on laminin 511-E8. On Matrigel, the hiPSCs were round and yes-associated protein (YAP) was inactive. In contrast, on laminin 511-E8, the hiPSCs were flat and YAP was active. Treating the laminin 511-E8 hiPSCs in a bioreactor caused cell aggregates, in which the cells were round and YAP was inactive. Subsequent culture of the aggregates in chondrogenic medium resulted in cartilage formation. Transient knockdown of YAP in hiPSCs around the start of chondrogenic differentiation successfully formed cartilage on laminin 511-E8, suggesting that the activation of YAP is responsible for the failure of cartilage formation from hiPSCs on laminin 511-E8. Consistently, the addition of YAP inhibitors to laminin 511-E8 hiPSCs caused partial cartilage formation. This study contributes to identifying the molecules that mediate the effects of culture substrates on the chondrogenic differentiation of hiPSCs as well as to developing clinically applicable chondrogenic differentiation methods.


Asunto(s)
Cartílago/crecimiento & desarrollo , Condrogénesis , Células Madre Pluripotentes Inducidas , Proteínas Señalizadoras YAP/genética , Diferenciación Celular , Células Cultivadas , Condrocitos , Colágeno , Medios de Cultivo , Combinación de Medicamentos , Humanos , Laminina , Proteoglicanos
14.
Sci Rep ; 10(1): 20915, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262386

RESUMEN

Achondroplasia is caused by gain-of-function mutations in FGFR3 gene and leads to short-limb dwarfism. A stabilized analogue of C-type natriuretic peptide (CNP) is known to elongate bone by interacting with FGFR3 signals and thus is a promising drug candidate. However, it needs daily administration by percutaneous injection. FGFR inhibitor compounds are other drug candidates for achondroplasia because they directly fix the mutant protein malfunction. Although FGFR inhibitors elongate the bone of model mice, their adverse effects are not well studied. In this study, we found that a new FGFR inhibitor, ASP5878, which was originally developed as an anti-cancer drug, elongated the bone of achondroplasia model male mice at the dose of 300 µg/kg, which confers an AUC of 275 ng·h/ml in juvenile mice. Although ASP5878 was less effective in bone elongation than a CNP analogue, it is advantageous in that ASP5878 can be administered orally. The AUC at which minimal adverse effects were observed (very slight atrophy of the corneal epithelium) was 459 ng·h/ml in juvenile rats. The positive discrepancy between AUCs that brought efficacy and minimal adverse effect suggests the applicability of ASP5878 to achondroplasia in the clinical setting. We also analyzed effects of ASP5878 in a patient-specific induced pluripotent stem cell (iPSC) model for achondroplasia and found the effects on patient chondrocyte equivalents. Nevertheless, cautious consideration is needed when referring to safety data obtained from its application to adult patients with cancer in clinical tests.


Asunto(s)
Acondroplasia/tratamiento farmacológico , Descubrimiento de Drogas , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Acondroplasia/sangre , Acondroplasia/diagnóstico por imagen , Animales , Desarrollo Óseo/efectos de los fármacos , Cartílago/efectos de los fármacos , Cartílago/patología , Modelos Animales de Enfermedad , Fémur/diagnóstico por imagen , Fémur/efectos de los fármacos , Fémur/patología , Placa de Crecimiento/efectos de los fármacos , Placa de Crecimiento/patología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones Transgénicos , Pirazoles/administración & dosificación , Pirazoles/sangre , Pirazoles/farmacocinética , Pirimidinas/administración & dosificación , Pirimidinas/sangre , Pirimidinas/farmacocinética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Pruebas de Toxicidad
15.
Sci Rep ; 10(1): 12794, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732907

RESUMEN

Articular cartilage damage does not heal spontaneously and causes joint dysfunction. The implantation of induced pluripotent stem cell (iPSC)-derived cartilage (iPS-Cart) is one candidate treatment to regenerate the damaged cartilage. However, concerns of tumorigenicity are associated with iPS-Cart, because the iPSC reprogramming process and long culture time for cartilage induction could increase the chance of malignancy. We evaluated the tumorigenic risks of iPS-Cart using HeLa cells as the reference. Spike tests revealed that contamination with 100 HeLa cells in 150 mg of iPS-Cart accelerated the cell growth rate. On the other hand, 150 mg of iPS-Cart without HeLa cells reached growth arrest and senescence after culture, suggesting less than 100 tumorigenic cells, assuming they behave like HeLa cells, contaminated iPS-Cart. The implantation of 10,000 or fewer HeLa cells into joint surface defects in the knee joint of nude rat did not cause tumor formation. These in vitro and in vivo studies collectively suggest that the implantation of 15 g or less iPS-Cart in the knee joint does not risk tumor formation if assuming that the tumorigenic cells in iPS-Cart are equivalent to HeLa cells and that nude rat knee joints are comparable to human knee joints in terms of tumorigenicity. However, considering the limited immunodeficiency of nude rats, the clinical amount of iPS-Cart for implantation needs to be determined cautiously.


Asunto(s)
Carcinogénesis , Cartílago Articular/patología , Células Madre Pluripotentes Inducidas/patología , Animales , Subgrupos de Linfocitos B , Cartílago Articular/citología , Proliferación Celular , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/citología , Articulación de la Rodilla/citología , Articulación de la Rodilla/patología , Ratas Desnudas , Riesgo
16.
Tissue Eng Part C Methods ; 26(5): 244-252, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32143549

RESUMEN

Recently, many studies on the three-dimensional (3D) fabrication of cells have been performed. Under these circumstances, it is indispensable to develop the imaging technologies and methodologies for noninvasive visualization of 3D cells fabricated. The objective of this study is to develop the labeling method of human induced pluripotent stem (iPS) cells-derived 3D cartilage tissue with gelatin nanospheres coincorporating three kinds of quantum dots (QD) and iron oxide nanoparticles (IONP) (GNSQD+IONP). In this study, two labeling methods were performed. One is that a cartilage tissue was labeled directly by incubating with octaarginine (R8)-treated GNSQD+IONP (direct labeling method). The other one is a "dissociation and labeling method." First, the cartilage tissue was dissociated to cells in a single dispersed state. Then, the cells were incubated with R8-GNSQD+IONP in a monolayer culture. Finally, the cells labeled were fabricated to 3D pellets or cell sheets. By the direct labeling method, only cells residing in the surrounding site of cartilage tissue were labeled. On the contrary, the 3D cartilage pellets and the cell sheets were homogenously labeled and maintained fluorescently visualized over 4 weeks. In addition, the cartilage properties were histologically detected even after the process of dissociation and labeling. Homogenous labeling and visualization of human iPS cells-derived 3D cartilage tissue was achieved by the dissociation and labeling method with GNSQD+IONP. Impact statement The homogenous labeling and visualization of human iPS cells-derived three-dimensional (3D) cartilage tissue was achieved over 4 weeks by the dissociation and labeling method with gelatin nanospheres coincorporating quantum dots (QD) and iron oxide nanoparticles (IONP) (GNSQD+IONP). The cartilage properties of cells treated were maintained. It is concluded that the dissociation and labeling method with GNSQD+IONP is a promising to visualize the human iPS cells-derived 3D cartilage tissue.


Asunto(s)
Cartílago/citología , Gelatina/química , Células Madre Pluripotentes Inducidas/citología , Nanopartículas Magnéticas de Óxido de Hierro/química , Puntos Cuánticos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Humanos , Nanosferas/química
17.
Biochem Biophys Res Commun ; 516(4): 1097-1102, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31280862

RESUMEN

The maturation of chondrocytes is strictly regulated for proper endochondral bone formation. Although recent studies have revealed that intracellular metabolic processes regulate the proliferation and differentiation of cells, little is known about how changes in metabolite levels regulate chondrocyte maturation. To identify the metabolites which regulate chondrocyte maturation, we performed a metabolome analysis on chondrocytes of Sik3 knockout mice, in which chondrocyte maturation is delayed. Among the metabolites, acetyl-CoA was decreased in this model. Immunohistochemical analysis of the Sik3 knockout chondrocytes indicated that the expression levels of phospho-pyruvate dehydrogenase (phospho-Pdh), an inactivated form of Pdh, which is an enzyme that converts pyruvate to acetyl-CoA, and of Pdh kinase 4 (Pdk4), which phosphorylates Pdh, were increased. Inhibition of Pdh by treatment with CPI613 delayed chondrocyte maturation in metatarsal primordial cartilage in organ culture. These results collectively suggest that decreasing the acetyl-CoA level is a cause and not result of the delayed chondrocyte maturation. Sik3 appears to increase the acetyl-CoA level by decreasing the expression level of Pdk4. Blocking ATP synthesis in the TCA cycle by treatment with rotenone also delayed chondrocyte maturation in metatarsal primordial cartilage in organ culture, suggesting the possibility that depriving acetyl-CoA as a substrate for the TCA cycle is responsible for the delayed maturation. Our finding of acetyl-CoA as a regulator of chondrocyte maturation could contribute to understanding the regulatory mechanisms controlling endochondral bone formation by metabolites.


Asunto(s)
Acetilcoenzima A/metabolismo , Condrocitos/metabolismo , Osteogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Condrocitos/citología , Condrogénesis , Femenino , Eliminación de Gen , Metaboloma , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética
18.
Tissue Eng Part A ; 25(5-6): 437-445, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30129877

RESUMEN

IMPACT STATEMENT: Cartilage particles derived from human induced pluripotent stem cells (hiPS-Carts) are one candidate source for transplants for treatment of articular cartilage damage. This study shows that hiPS-Carts integrate with each other in an in vitro model and analyzed the course of the integration. The integration starts at the perichondrium-like membrane at around 1 week and then progresses to the central cartilage within 4-8 weeks. The results indicate that FGF18 secreted from the perichondrium-like membrane accelerates the initial step of integration. The findings contribute to understanding how hiPS-Carts form repair tissue and provide clue to accelerate healing after transplantation.


Asunto(s)
Cartílago Articular/citología , Células Madre Pluripotentes Inducidas/citología , Recuento de Células , Línea Celular , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Membranas , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Inflamm Regen ; 38: 17, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30305854

RESUMEN

BACKGROUND: A lack of cell or tissue sources hampers regenerative medicine for articular cartilage damage. MAIN TEXT: We review and discuss the possible use of pluripotent stem cells as a new source for future clinical use. Human induced pluripotent stem cells (hiPSCs) have several advantages over human embryonic stem cells (hESCs). Methods for the generation of chondrocytes and cartilage from hiPSCs have been developed. To reduce the cost of this regenerative medicine, allogeneic transplantation is preferable. hiPSC-derived cartilage shows low immunogenicity like native cartilage, because the cartilage is avascular and chondrocytes are segregated by the extracellular matrix. In addition, we consider our experience with the aberrant deposition of lipofuscin or melanin on cartilage during the chondrogenic differentiation of hiPSCs. SHORT CONCLUSION: Cartilage generated from allogeneic hiPSC-derived cartilage can be used to repair articular cartilage damage.

20.
Clin Calcium ; 28(6): 803-808, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-29848826

RESUMEN

Induced pluripotent stem (iPS)cells have capacities of self-renewal and pluripotency. We have developed a method to differentiate human iPS cells toward chondrocytes, followed by the creation of cartilage tissue composed of chondrocytes and cartilage extracellular matrix. The mechanism through which tissue transplantation repairs cartilage defects involves the transplant itself constituting the repair tissue. Human iPS cell-derived cartilage has low immunogenicity and can be transplanted in an allogeneic manner. We are conducting pre-clinical tests on iPS cell-derived cartilage to verify efficacy and safety that will act as a basis for clinical tests.


Asunto(s)
Cartílago Articular/crecimiento & desarrollo , Condrocitos/citología , Células Madre Pluripotentes Inducidas/citología , Osteoartritis/terapia , Regeneración , Cartílago Articular/citología , Diferenciación Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...