Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 27, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631460

RESUMEN

The Stroop effect is a classical, well-known behavioral phenomenon in humans that refers to robust interference between language and color information. It remains unclear, however, when the interference occurs and how it is resolved in the brain. Here we show that the Stroop effect occurs during perception of color-word stimuli and involves a cross-hemispheric, excitatory-inhibitory loop functionally connecting the lateral prefrontal cortex and cerebellum. Participants performed a Stroop task and a non-verbal control task (which we term the Swimmy task), and made a response vocally or manually. The Stroop effect involved the lateral prefrontal cortex in the left hemisphere and the cerebellum in the right hemisphere, independently of the response type; such lateralization was absent during the Swimmy task, however. Moreover, the prefrontal cortex amplified cerebellar activity, whereas the cerebellum suppressed prefrontal activity. This fronto-cerebellar loop may implement language and cognitive systems that enable goal-directed behavior during perceptual conflicts.


Asunto(s)
Encéfalo , Corteza Prefrontal , Humanos , Test de Stroop , Tiempo de Reacción/fisiología , Encéfalo/fisiología , Corteza Prefrontal/fisiología , Cerebelo , Imagen por Resonancia Magnética
2.
J Neurosci ; 42(22): 4567-4579, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35501155

RESUMEN

Response inhibition is a primary executive control function that allows the withholding of inappropriate responses, and requires appropriate perception of the external environment to achieve a behavioral goal. It remains unclear, however, how response inhibition is achieved when goal-relevant information involves perceptual uncertainty. Twenty-six human participants of both sexes performed a go/no-go task where visually presented random-dot motion stimuli involved perceptual uncertainties. The right inferior frontal cortex (rIFC) was involved in response inhibition, and the middle temporal (MT) region showed greater activity when dot motions involved less uncertainty. A neocortical temporal region in the superior temporal sulcus (STS) specifically showed greater activity during response inhibition in more perceptually certain trials. In this STS region, activity was greater when response inhibition was successful than when it failed. Directional effective connectivity analysis revealed that, in more coherent trials, the MT and STS regions showed enhanced connectivity to the rIFC, whereas in less coherent trials, the signal direction was reversed. These results suggest that a reversible fronto-temporal functional network guides response inhibition and perceptual decision-making under perceptual uncertainty, and in this network, perceptual information in the MT is converted to control information in the rIFC via STS, enabling achievement of response inhibition.SIGNIFICANCE STATEMENT Response inhibition refers to withholding inappropriate behavior and is important for achieving goals. Often, however, decision must be made based on limited environmental evidence. We showed that successful response inhibition is guided by a neocortical temporal region that plays a hub role in converting perceived information coded in a posterior temporal region to control information coded in the PFC. Interestingly, when a perceived stimulus becomes more uncertain, the PFC supplements stimulus encoding in the temporal regions. Our results highlight fronto-temporal mechanisms of response inhibition in which conversion of stimulus-control information is regulated based on the uncertainty of environmental evidence.


Asunto(s)
Lóbulo Frontal , Imagen por Resonancia Magnética , Mapeo Encefálico , Función Ejecutiva/fisiología , Femenino , Lóbulo Frontal/fisiología , Humanos , Inhibición Psicológica , Masculino , Incertidumbre
3.
Neuroimage ; 249: 118892, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007716

RESUMEN

In real life, humans make decisions by taking into account multiple independent factors, such as delay and probability. Cognitive psychology suggests that cognitive control mechanisms play a key role when facing such complex task conditions. However, in value-based decision-making, it still remains unclear to what extent cognitive control mechanisms become essential when the task condition is complex. In this study, we investigated decision-making behaviors and underlying neural mechanisms using a multifactor gambling task where participants simultaneously considered probability and delay. Decision-making behavior in the multifactor task was modulated by both probability and delay. The behavioral effect of probability was stronger than delay, consistent with previous studies. Furthermore, in a subset of conditions that recruited fronto-parietal activations, reaction times were paradoxically elongated despite lower probabilistic uncertainty. Notably, such a reaction time elongation did not occur in control tasks involving single factors. Meta-analysis of brain activations suggested an interpretation that the paradoxical increase of reaction time may be associated with strategy switching. Consistent with this interpretation, logistic regression analysis of the behavioral data suggested a presence of multiple decision strategies. Taken together, we found that a novel complex value-based decision-making task cause prominent activations in fronto-parietal cortex. Furthermore, we propose that these activations can be interpreted as recruitment of cognitive control system in complex situations.


Asunto(s)
Toma de Decisiones/fisiología , Función Ejecutiva/fisiología , Red Nerviosa/fisiología , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Adolescente , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Lóbulo Parietal/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Incertidumbre , Adulto Joven
4.
Cereb Cortex ; 32(9): 1911-1931, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-34519334

RESUMEN

Adaptation to changing environments involves the appropriate extraction of environmental information to achieve a behavioral goal. It remains unclear how behavioral flexibility is guided under situations where the relevant behavior is ambiguous. Using functional brain mapping of machine learning decoders and directional functional connectivity, we show that brain-wide reversible neural signaling underpins task encoding and behavioral flexibility in ambiguously changing environments. When relevant behavior is cued ambiguously during behavioral shifting, neural coding is attenuated in distributed cortical regions, but top-down signals from the prefrontal cortex complement the coding. When behavioral shifting is cued more explicitly, modality-specialized occipitotemporal regions implement distinct neural coding about relevant behavior, and bottom-up signals from the occipitotemporal region to the prefrontal cortex supplement the behavioral shift. These results suggest that our adaptation to an ever-changing world is orchestrated by the alternation of top-down and bottom-up signaling in the fronto-occipitotemporal circuit depending on the availability of environmental information.


Asunto(s)
Mapeo Encefálico , Señales (Psicología) , Encéfalo , Imagen por Resonancia Magnética , Corteza Prefrontal
5.
J Neurosci ; 41(10): 2197-2213, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33468569

RESUMEN

Flexible adaptation to changing environments is a representative executive control function implicated in the frontoparietal network that requires appropriate extraction of goal-relevant information through perception of the external environment. It remains unclear, however, how the flexibility is achieved under situations where goal-relevant information is uncertain. To address this issue, the current study examined neural mechanisms for task switching in which task-relevant information involved perceptual uncertainty. Twenty-eight human participants of both sexes alternated behavioral tasks in which they judged motion direction or color of visually presented colored dot stimuli that moved randomly. Task switching was associated with frontoparietal regions in the left hemisphere, and perception of ambiguous stimuli involved contralateral homologous frontoparietal regions. On the other hand, in stimulus-modality-dependent occipitotemporal regions, task coding information was increased during task switching. Effective connectivity analysis revealed that the frontal regions signaled toward the modality-dependent occipitotemporal regions when a relevant stimulus was more ambiguous, whereas the occipitotemporal regions signaled toward the frontal regions when the stimulus was more distinctive. These results suggest that complementary prefrontal mechanisms in the left and right hemispheres help to achieve a behavioral goal when the external environment involves perceptual uncertainty.SIGNIFICANCE STATEMENT In our daily life, environmental information to achieve a goal is not always certain, but we make judgments in such situations, and change our behavior accordingly. This study examined how the flexibility of behavior is achieved in a situation where goal-relevant information involves perceptual uncertainty. fMRI revealed that the lateral prefrontal cortex (PFC) in the left hemisphere is associated with behavioral flexibility, and the perception of ambiguous stimuli involves the PFC in the right hemisphere. These bilateral PFC signaled to stimulus-modality-dependent occipitotemporal regions, depending on perceptual uncertainty and the task to be performed. These top-down signals supplement task coding in the occipitotemporal regions, and highlight interhemispheric prefrontal mechanisms involved in executive control and perceptual decision-making.


Asunto(s)
Adaptación Fisiológica/fisiología , Toma de Decisiones/fisiología , Función Ejecutiva/fisiología , Lateralidad Funcional/fisiología , Corteza Prefrontal/fisiología , Adolescente , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Estimulación Luminosa/métodos , Tiempo de Reacción/fisiología , Incertidumbre , Adulto Joven
6.
PLoS One ; 13(5): e0196866, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29742133

RESUMEN

The neural mechanisms underlying visual perceptual learning (VPL) have typically been studied by examining changes in task-related brain activation after training. However, the relationship between post-task "offline" processes and VPL remains unclear. The present study examined this question by obtaining resting-state functional magnetic resonance imaging (fMRI) scans of human brains before and after a task-fMRI session involving visual perceptual training. During the task-fMRI session, participants performed a motion coherence discrimination task in which they judged the direction of moving dots with a coherence level that varied between trials (20, 40, and 80%). We found that stimulus-induced activation increased with motion coherence in the middle temporal cortex (MT+), a feature-specific region representing visual motion. On the other hand, stimulus-induced activation decreased with motion coherence in the dorsal anterior cingulate cortex (dACC) and bilateral insula, regions involved in decision making under perceptual ambiguity. Moreover, by comparing pre-task and post-task rest periods, we revealed that resting-state functional connectivity (rs-FC) with the MT+ was significantly increased after training in widespread cortical regions including the bilateral sensorimotor and temporal cortices. In contrast, rs-FC with the MT+ was significantly decreased in subcortical regions including the thalamus and putamen. Importantly, the training-induced change in rs-FC was observed only with the MT+, but not with the dACC or insula. Thus, our findings suggest that perceptual training induces plastic changes in offline functional connectivity specifically in brain regions representing the trained visual feature, emphasising the distinct roles of feature-representation regions and decision-related regions in VPL.


Asunto(s)
Corteza Cerebral/fisiología , Giro del Cíngulo/fisiología , Visión Ocular/fisiología , Percepción Visual/fisiología , Adolescente , Adulto , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Cognición/fisiología , Toma de Decisiones , Femenino , Giro del Cíngulo/diagnóstico por imagen , Humanos , Aprendizaje/fisiología , Imagen por Resonancia Magnética , Masculino , Memoria/fisiología , Movimiento (Física) , Tálamo/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...