Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 107(1): 215-236, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33884692

RESUMEN

Mitochondria and chloroplasts are organelles with high iron demand that are particularly susceptible to iron-induced oxidative stress. Despite the necessity of strict iron regulation in these organelles, much remains unknown about mitochondrial and chloroplast iron transport in plants. Here, we propose that Arabidopsis ferroportin 3 (FPN3) is an iron exporter that is dual-targeted to mitochondria and chloroplasts. FPN3 is expressed in shoots, regardless of iron conditions, but its transcripts accumulate under iron deficiency in roots. fpn3 mutants cannot grow as well as the wild type under iron-deficient conditions and their shoot iron levels are lower compared with the wild type. Analyses of iron homeostasis gene expression in fpn3 mutants and inductively coupled plasma mass spectrometry (ICP-MS) measurements show that iron levels in the mitochondria and chloroplasts are increased relative to the wild type, consistent with the proposed role of FPN3 as a mitochondrial/plastid iron exporter. In iron-deficient fpn3 mutants, abnormal mitochondrial ultrastructure was observed, whereas chloroplast ultrastructure was not affected, implying that FPN3 plays a critical role in the mitochondria. Overall, our study suggests that FPN3 is essential for optimal iron homeostasis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Hierro/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Cloroplastos/metabolismo , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Homeostasis , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Levaduras/genética , Levaduras/metabolismo
2.
Plant Signal Behav ; 15(9): 1784549, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32594838

RESUMEN

Plants use intricate mechanisms to adapt to changing iron conditions because iron is essential and also one of the most limiting nutrients for plant growth. Furthermore, iron is potentially toxic in excess and must be tightly regulated. Previously, we showed that chromatin remodeling via histone 3 lysine 27 trimethylation (H3K27me3) modulates the expression of FIT-dependent genes under iron deficiency in roots. This study builds on our previous findings, showing that H3K27me3 also modulates iron regulation in shoots. In the clf mutant, which lacks the predominant H3K27 tri-methyltransferase, we detected increased iron translocation to shoots under iron deficiency as compared to wild type. Transcriptomic analysis of shoots also revealed differential expression of genes consistent with higher iron levels in clf shoots than wild type shoots under iron-deficient conditions. In addition, we verify that YSL1 and IMA1, two genes involved in signaling iron status from shoots to roots, are direct targets of H3K27me3 and reveal iron-dependent deposition of H3K27me3 on these loci. This study contributes to a better understanding of the molecular mechanisms behind iron regulation in plants, as the effect of PRC2-mediated H3K27me3 on iron homeostasis genes expressed in the shoots has not been previously reported to our knowledge.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histonas/metabolismo , Brotes de la Planta/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Homeostasis , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Complejo Represivo Polycomb 2/genética , Transcriptoma/genética , Transcriptoma/fisiología
3.
Front Plant Sci ; 10: 627, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156682

RESUMEN

Iron is an essential micronutrient for nearly all organisms, but excessive iron can lead to the formation of cytotoxic reactive oxygen species. Therefore, iron acquisition and homeostasis must be tightly regulated. Plants have evolved complex mechanisms to optimize their use of iron, which is one of the most limiting nutrients in the soil. In particular, transcriptional regulation is vital for regulating iron in plants, and much work has revealed the role of transcription factors on this front. Our study adds novel insights to the transcriptional regulation of iron homeostasis in plants by showing that chromatin remodeling via histone 3 lysine 27 trimethylation (H3K27me3) modulates the expression of FIT-dependent genes under iron deficiency. We provide evidence that FIT-dependent iron acquisition genes, IRT1 and FRO2, as well as FIT itself are direct targets of PRC2-mediated H3K27me3. In the clf mutant, which lacks the predominant H3K27 tri-methyltransferase, induction of FIT, FRO2, IRT1, and other FIT-regulated genes in roots is significantly higher under iron deficient conditions than in wild type. Furthermore, we observe that clf mutants are more tolerant to iron deficiency than wild type, indicating that gene expression levels appear to be limiting the plants ability to access iron. We propose that H3K27me3 attenuates the induction of FIT-target genes under iron deficiency and hypothesize that this may serve as a mechanism to restrict the maximum level of induction of iron acquisition genes to prevent iron overload.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...