Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(24): eabm2781, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35714181

RESUMEN

An electron is usually considered to have only one form of kinetic energy, but could it have more, for its spin and charge, by exciting other electrons? In one dimension (1D), the physics of interacting electrons is captured well at low energies by the Tomonaga-Luttinger model, yet little has been observed experimentally beyond this linear regime. Here, we report on measurements of many-body modes in 1D gated wires using tunneling spectroscopy. We observe two parabolic dispersions, indicative of separate Fermi seas at high energies, associated with spin and charge excitations, together with the emergence of two additional 1D "replica" modes that strengthen with decreasing wire length. The interaction strength is varied by changing the amount of 1D intersubband screening by more than 45%. Our findings not only demonstrate the existence of spin-charge separation in the whole energy band outside the low-energy limit of the Tomonaga-Luttinger model but also set a constraint on the validity of the newer nonlinear Tomonaga-Luttinger theory.

2.
Phys Rev Lett ; 106(10): 106803, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21469823

RESUMEN

The main source of decoherence for an electron spin confined to a quantum dot is the hyperfine interaction with nuclear spins. To analyze this process theoretically we diagonalize the central spin Hamiltonian in the high magnetic B-field limit. Then we project the eigenstates onto an unpolarized state of the nuclear bath and find that the resulting density of states has Gaussian tails. The level spacing of the nuclear sublevels is exponentially small in the middle of each of the two electron Zeeman levels but increases superexponentially away from the center. This suggests to select states from the wings of the distribution when the system is projected on a single eigenstate by a measurement to reduce the noise of the nuclear spin bath. This theory is valid when the external magnetic field is larger than a typical Overhauser field at high nuclear spin temperature.

3.
Phys Rev Lett ; 96(9): 097005, 2006 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-16606301

RESUMEN

We determine the limiting dynamics of a fermionic condensate following a sudden perturbation for various initial conditions. Possible initial states of the condensate fall into two classes. In the first case, the order parameter asymptotes to a constant value. The approach to a constant is oscillatory with an inverse square root decay. This happens, e.g., when the strength of pairing is abruptly changed while the system is in the paired ground state and more generally for any nonequilibrium state that is in the same class as the ground state. In the second case, the order parameter exhibits persistent oscillations with several frequencies. This is realized for nonequilibrium states that belong to the same class as excited stationary states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...