Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Nat Commun ; 15(1): 1785, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413626

RESUMEN

Liver kinase B1 (LKB1), an evolutionarily conserved serine/threonine kinase, is a master regulator of the AMPK subfamily and controls cellular events such as polarity, proliferation, and energy homeostasis. Functions and mechanisms of the LKB1-AMPK axis at specific subcellular compartments, such as lysosome and mitochondria, have been established. AMPK is known to be activated at the Golgi; however, functions and regulatory mechanisms of the LKB1-AMPK axis at the Golgi apparatus remain elusive. Here, we show that TBC1D23, a Golgi-localized protein that is frequently mutated in the neurodevelopment disorder pontocerebellar hypoplasia (PCH), is specifically required for the LKB1 signaling at the Golgi. TBC1D23 directly interacts with LKB1 and recruits LKB1 to Golgi, promoting Golgi-specific activation of AMPK upon energy stress. Notably, Golgi-targeted expression of LKB1 rescues TBC1D23 deficiency in zebrafish models. Furthermore, the loss of LKB1 causes neurodevelopmental abnormalities in zebrafish, which partially recapitulates defects in TBC1D23-deficient zebrafish, and LKB1 sustains normal neuronal development via TBC1D23 interaction. Our study uncovers a regulatory mechanism of the LKB1 signaling, and reveals that a disrupted Golgi-LKB1 signaling underlies the pathogenesis of PCH.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Enfermedades Cerebelosas , Pez Cebra , Animales , Pez Cebra/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Aparato de Golgi/metabolismo
2.
J Cell Biol ; 223(2)2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38252411

RESUMEN

STK19 was originally identified as a manganese-dependent serine/threonine-specific protein kinase, but its function has been highly debated. Here, the crystal structure of STK19 revealed that it does not contain a kinase domain, but three intimately packed winged helix (WH) domains. The third WH domain mediated homodimerization and double-stranded DNA binding, both being important for its nuclear localization. STK19 participated in the nucleotide excision repair (NER) and mismatch repair (MMR) pathways by recruiting damage repair factors such as RPA2 and PCNA. STK19 also bound double-stranded RNA through the DNA-binding interface and regulated the expression levels of many mRNAs. Furthermore, STK19 knockdown cells exhibited very slow cell proliferation, which cannot be rescued by dimerization or DNA-binding mutants. Therefore, this work concludes that STK19 is highly unlikely to be a kinase but a DNA/RNA-binding protein critical for DNA damage repair (DDR) and cell proliferation. To prevent further confusions, we renamed this protein as TWH19 (Tandem Winged Helix protein formerly known as STK19).


Asunto(s)
Proliferación Celular , Reparación del ADN , Proteínas Nucleares , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas , Daño del ADN , Fosforilación , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína
3.
Nanoscale ; 16(2): 635-644, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38087964

RESUMEN

Photodynamic therapy (PDT) is a light-activated local treatment modality that has promising potential in cancer therapy. However, ineffective delivery of photosensitizers and hypoxia in the tumor microenvironment severely restrict the therapeutic efficacy of PDT. Herein, phototactic Chlorella (C) is utilized to carry photosensitizer-encapsulated nanoparticles to develop a near-infrared (NIR) driven green affording-oxygen microrobot system (CurNPs-C) for enhanced PDT. Photosensitizer (curcumin, Cur) loaded nanoparticles are first synthesized and then covalently attached to C through amide bonds. An in vitro study demonstrates that the developed CurNPs-C exhibits continuous oxygen generation and desirable phototaxis under NIR treatment. After intravenous injection, the initial 660 nm laser irradiation successfully induces the active migration of CurNPs-C to tumor sites for higher accumulation. Upon the second 660 nm laser treatment, CurNPs-C produces abundant oxygen, which in turn induces the natural product Cur to generate more reactive oxygen species (ROS) that significantly inhibit the growth of tumors in 4T1 tumor-bearing mice. This contribution showcases the ability of a light-driven green affording-oxygen microrobot to exhibit targeting capacity and O2 generation for enhancing photodynamic therapy.


Asunto(s)
Chlorella , Nanopartículas , Neoplasias , Fotoquimioterapia , Ratones , Animales , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Oxígeno , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno , Nanopartículas/uso terapéutico , Nanopartículas/química , Línea Celular Tumoral , Microambiente Tumoral
4.
Small ; 20(3): e2306208, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670543

RESUMEN

Nanotechnology-based strategy has recently drawn extensive attention for the therapy of malignant tumors due to its distinct strengths in cancer diagnosis and treatment. However, the limited intratumoral permeability of nanoparticles is a major hurdle to achieving the desired effect of cancer treatment. Due to their superior cargo towing and reliable penetrating property, micro-/nanomotors (MNMs) are considered as one of the most potential candidates for the coming generation of drug delivery platforms. Here, near-infrared (NIR)-actuated biomimetic nanomotors (4T1-JPGSs-IND) are fabricated successfully and we demonstrate that 4T1-JPGSs-IND selectively accumulate in homologous tumor regions due to the effective homing ability. Upon laser irradiation, hyperthermia generated by 4T1-JPGSs-IND leads to self-thermophoretic motion and photothermal therapy (PTT) to ablate tumors with a deep depth, thereby improving the photothermal therapeutic effect for cancer management. The developed nanomotor system with multifunctionalities exhibits promising potential in biomedical applications to fight against various diseases.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Fototerapia , Biomimética , Neoplasias/terapia , Línea Celular Tumoral
5.
Cardiovasc Diabetol ; 22(1): 336, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066511

RESUMEN

BACKGROUND: The effects of diabetes on the cardiac and aortic structure and function remain unclear. Detecting and intervening these variations early is crucial for the prevention and management of complications. Cardiovascular magnetic resonance imaging-derived traits are established endophenotypes and serve as precise, early-detection, noninvasive clinical risk biomarkers. We conducted a Mendelian randomization (MR) study to examine the association between two types of diabetes, four glycemic traits, and preclinical endophenotypes of cardiac and aortic structure and function. METHODS: Independent genetic variants significantly associated with type 1 diabetes, type 2 diabetes, fasting insulin (FIns), fasting glucose (FGlu), 2 h-glucose post-challenge (2hGlu), and glycated hemoglobin (HbA1c) were selected as instrumental variables. The 96 cardiovascular magnetic resonance imaging traits came from six independent genome-wide association studies. These traits serve as preclinical endophenotypes and offer an early indication of the structure and function of the four cardiac chambers and two aortic sections. The primary analysis was performed using MR with the inverse-variance weighted method. Confirmation was achieved through Steiger filtering and testing to determine the causal direction. Sensitivity analyses were conducted using the weighted median, MR-Egger, and MR-PRESSO methods. Additionally, multivariable MR was used to adjust for potential effects associated with body mass index. RESULTS: Genetic susceptibility to type 1 diabetes was associated with increased ascending aortic distensibility. Conversely, type 2 diabetes showed a correlation with a reduced diameter and areas of the ascending aorta, as well as decreased distensibility of the descending aorta. Genetically predicted higher levels of FGlu and HbA1c were correlated with a decrease in diameter and areas of the ascending aorta. Furthermore, higher 2hGlu levels predominantly showed association with a reduced diameter of both the ascending and descending aorta. Higher FIns levels corresponded to increased regional myocardial-wall thicknesses at end-diastole, global myocardial-wall thickness at end-diastole, and regional peak circumferential strain of the left ventricle. CONCLUSIONS: This study provides evidence that diabetes and glycemic traits have a causal relationship with cardiac and aortic structural and functional remodeling, highlighting the importance of intensive glucose-lowering for primary prevention of cardiovascular diseases.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Hemoglobina Glucada , Estudio de Asociación del Genoma Completo , Fenotipo , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Glucosa , Biomarcadores , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple
6.
Adv Sci (Weinh) ; 10(33): e2303759, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37818787

RESUMEN

Sepsis is a highly heterogeneous syndrome normally characterized by bacterial infection and dysregulated systemic inflammatory response that leads to multiple organ failure and death. Single anti-inflammation or anti-infection treatment exhibits limited survival benefit for severe cases. Here a biodegradable tobramycin-loaded magnesium micromotor (Mg-Tob motor) is successfully developed as a potential hydrogen generator and active antibiotic deliverer for synergistic therapy of sepsis. The peritoneal fluid of septic mouse provides an applicable space for Mg-water reaction. Hydrogen generated sustainably and controllably from the motor interface propels the motion to achieve active drug delivery along with attenuating hyperinflammation. The developed Mg-Tob motor demonstrates efficient protection from anti-inflammatory and antibacterial activity both in vitro and in vivo. Importantly, it prevents multiple organ failure and significantly improves the survival rate up to 87.5% in a high-grade sepsis model with no survival, whereas only about half of mice survive with the individual therapies. This micromotor displays the superior therapeutic effect of synergistic hydrogen-chemical therapy against sepsis, thus holding great promise to be an innovative and translational drug delivery system to treat sepsis or other inflammation-related diseases in the near future.


Asunto(s)
Sepsis , Tobramicina , Animales , Ratones , Insuficiencia Multiorgánica/tratamiento farmacológico , Antibacterianos , Sepsis/tratamiento farmacológico
7.
Acta Pharm Sin B ; 13(9): 3862-3875, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37719374

RESUMEN

Enzyme-driven micro/nanomotors consuming in situ chemical fuels have attracted lots of attention for biomedical applications. However, motor systems composed by organism-derived organics that maximize the therapeutic efficacy of enzymatic products remain challenging. Herein, swimming proteomotors based on biocompatible urease and human serum albumin are constructed for enhanced antitumor therapy via active motion and ammonia amplification. By decomposing urea into carbon dioxide and ammonia, the designed proteomotors are endowed with self-propulsive capability, which leads to improved internalization and enhanced penetration in vitro. As a glutamine synthetase inhibitor, the loaded l-methionine sulfoximine further prevents the conversion of toxic ammonia into non-toxic glutamine in both tumor and stromal cells, resulting in local ammonia amplification. After intravesical instillation, the proteomotors achieve longer bladder retention and thus significantly inhibit the growth of orthotopic bladder tumor in vivo without adverse effects. We envision that the as-developed swimming proteomotors with amplification of the product toxicity may be a potential platform for active cancer treatment.

8.
ACS Nano ; 17(17): 16620-16632, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37606341

RESUMEN

Tumor immunotherapy has shown considerable therapeutic potential in the past few years, but the clinical response rate of immunotherapy is less than 20%. Encountering the high heterogeneity of tumors, it will be a general trend to apply combined therapy for cancer treatment. Photodynamic therapy (PDT) transiently kills tumor cells by producing reactive oxygen species (ROS), while residual tumor cells are prone to metastasis, leading to tumor recurrence. In combination with tumor immunotherapy, it is hoped to awaken the host immune system and eradicate residual tumor cells. Herein, cancer cell membrane-coated nanoparticles as a platform to combine PDT, TLR7 agonist, and tumor antigen for the enhancement of tumor therapeutic efficacy are designed. The final biomimetic nanoparticles (CCMV/LTNPs) can specifically kill tumor cells through PDT, while strong host antitumor immune responses are elicited to eliminate residue tumor cells under the help of immune adjuvant and tumor antigen from the cancer cell membrane. In summary, a photoimmunotherapy strategy is designed that synergistically enhances the tumor therapeutic effects by killing tumor cells through PDT and activating host antitumor immune responses through the co-delivery of adjuvant and tumor antigen, which may offer a promising strategy for clinical immunotherapy in the future.


Asunto(s)
Nanopartículas , Receptor Toll-Like 7 , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasia Residual , Inmunoterapia , Adyuvantes Inmunológicos , Membrana Celular , Antígenos de Neoplasias
9.
Nat Commun ; 14(1): 4867, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567901

RESUMEN

Nanoparticle-based drug delivery systems have gained much attention in the treatment of various malignant tumors during the past decades. However, limited tumor penetration of nanodrugs remains a significant hurdle for effective tumor therapy due to the existing biological barriers of tumoral microenvironment. Inspired by bubble machines, here we report the successful fabrication of biomimetic nanodevices capable of in-situ secreting cell-membrane-derived nanovesicles with smaller sizes under near infrared (NIR) laser irradiation for synergistic photothermal/photodynamic therapy. Porous Au nanocages (AuNC) are loaded with phase transitable perfluorohexane (PFO) and hemoglobin (Hb), followed by oxygen pre-saturation and indocyanine green (ICG) anchored 4T1 tumor cell membrane camouflage. Upon slight laser treatment, the loaded PFO undergoes phase transition due to surface plasmon resonance effect produced by AuNC framework, thus inducing the budding of outer cell membrane coating into small-scale nanovesicles based on the pore size of AuNC. Therefore, the hyperthermia-triggered generation of nanovesicles with smaller size, sufficient oxygen supply and anchored ICG results in enhanced tumor penetration for further self-sufficient oxygen-augmented photodynamic therapy and photothermal therapy. The as-developed biomimetic bubble nanomachines with temperature responsiveness show great promise as a potential nanoplatform for cancer treatment.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Fotoquimioterapia , Biomimética , Hipertermia Inducida/métodos , Fotoquimioterapia/métodos , Fototerapia , Verde de Indocianina/farmacología , Oxígeno , Línea Celular Tumoral
10.
Adv Mater ; 35(35): e2301736, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37402480

RESUMEN

Neural stem cells (NSCs), with the capability of self-renewal, differentiation, and environment modulation, are considered promising for stroke, brain injury therapy, and neuron regeneration. Activation of endogenous NSCs, is attracting increasing research enthusiasm, which avoids immune rejection and ethical issues of exogenous cell transplantation. Yet, how to induce directed growth and differentiation in situ remain a major challenge. In this study, a pure water-driven Ni-Zn micromotor via a self-established electric-chemical field is proposed. The micromotors can be magnetically guided and precisely approach target NSCs. Through the electric-chemical field, bioelectrical signal exchange and communication with endogenous NSCs are allowed, thus allowing for regulated proliferation and directed neuron differentiation in vivo. Therefore, the Ni-Zn micromotor provides a platform for controlling cell fate via a self-established electrochemical field and targeted activation of endogenous NSCs.


Asunto(s)
Células-Madre Neurales , Accidente Cerebrovascular , Humanos , Neuronas , Diferenciación Celular/fisiología , Accidente Cerebrovascular/terapia , Proliferación Celular , Zinc
11.
Adv Sci (Weinh) ; 10(27): e2301635, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37518854

RESUMEN

Acute lung injury (ALI) is a frequent and serious complication of sepsis with limited therapeutic options. Gaining insights into the inflammatory dysregulation that causes sepsis-associated ALI can help develop new therapeutic strategies. Herein, the crucial role of cell-free mitochondrial DNA (cf-mtDNA) in the regulation of alveolar macrophage activation during sepsis-associated ALI is identified. Most importantly, a biocompatible hybrid protein nanomotor (NM) composed of recombinant deoxyribonuclease I (DNase-I) and human serum albumin (HSA) via glutaraldehyde-mediated crosslinking is prepared to obtain an inhalable nanotherapeutic platform targeting pulmonary cf-mtDNA clearance. The synthesized DNase-I/HSA NMs are endowed with self-propulsive capability and demonstrate superior performances in stability, DNA hydrolysis, and biosafety. Pulmonary delivery of DNase-I/HSA NMs effectively eliminates cf-mtDNAs in the lungs, and also improves sepsis survival by attenuating pulmonary inflammation and lung injury. Therefore, pulmonary cf-mtDNA clearance strategy using DNase-I/HSA NMs is considered to be an attractive approach for sepsis-associated ALI.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Humanos , ADN Mitocondrial/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/tratamiento farmacológico , Pulmón/metabolismo , Sepsis/complicaciones , Desoxirribonucleasas/metabolismo , Desoxirribonucleasas/uso terapéutico
12.
ACS Nano ; 17(14): 13826-13839, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37449804

RESUMEN

Interactions between active materials lead to collective behavior and even intelligence beyond the capability of individuals. Such behaviors are prevalent in nature and can be observed in animal colonies, providing these species with diverse capacities for communication and cooperation. In artificial systems, however, collective intelligence systems interacting with biological entities remains unexplored. Herein, we describe black (B)-TiO2@N/Au nanorobots interacting through photocatalytic pure water splitting-induced electrophoresis that exhibit periodic swarming oscillations under programmed near-infrared light. The periodic chemical-electric field generated by the oscillating B-TiO2@N/Au nanorobot swarm leads to local neuron activation in vitro. The field oscillations and neurotransmission from synchronized neurons further trigger the resonance oscillation of neuron populations without synaptic contact (about 2 mm spacing), in different ways from normal neuron oscillation requiring direct contact. We envision that the oscillating nanorobot swarm platforms will shed light on contactless communication of neurons and offer tools to explore interactions between neurons.


Asunto(s)
Neuronas , Titanio , Humanos , Animales , Neuronas/fisiología , Titanio/farmacología , Electricidad
13.
Eur J Pharmacol ; 954: 175869, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37369295

RESUMEN

Targeted cancer therapies have revolutionized the treatment of the disease in the past decade. The tyrosine kinase inhibitor (TKI) class of drugs is a widely used option for treating various cancers. Despite numerous advances, clinical and experimental studies have demonstrated the atherosclerosis-inducing properties of these drugs that can cause adverse cardiovascular events. TKIs also have an atherosclerosis-preventing role in patients with cancer through different mechanisms under various conditions, suggesting that specific drugs play different roles in atherosclerosis regulation. Given these contradictory properties, this review summarizes the outcomes of previously performed clinical and basic experiments and shows how the targeted effects of novel TKIs affect atherosclerosis. Future collaborative efforts are warranted to enhance our understanding of the association between TKIs and atherosclerosis.


Asunto(s)
Antineoplásicos , Aterosclerosis , Neoplasias , Humanos , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/efectos adversos , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/inducido químicamente
14.
Adv Sci (Weinh) ; 10(25): e2300540, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37382399

RESUMEN

An efficient and cost-effective therapeutic vaccine is highly desirable for the prevention and treatment of cancer, which helps to strengthen the immune system and activate the T cell immune response. However, initiating such an adaptive immune response efficiently remains challenging, especially the deficient antigen presentation by dendritic cells (DCs) in the immunosuppressive tumor microenvironment. Herein, an efficient and dynamic antigen delivery system based on the magnetically actuated OVA-CaCO3 -SPIO robots (OCS-robots) is rationally designed for active immunotherapy. Taking advantage of the unique dynamic features, the developed OCS-robots achieve controllable motion capability under the rotating magnetic field. Specifically, with the active motion, the acid-responsiveness of OCS-robots is beneficial for the tumor acidity attenuating and lysosome escape as well as the subsequent antigen cross-presentation of DCs. Furthermore, the dynamic OCS-robots boost the crosstalk between the DCs and antigens, which displays prominent tumor immunotherapy effect on melanoma through cytotoxic T lymphocytes (CTLs). Such a strategy of dynamic vaccine delivery system enables the active activation of immune system based on the magnetically actuated OCS-robots, which presents a plausible paradigm for incredibly efficient cancer immunotherapy by designing multifunctional and novel robot platforms in the future.


Asunto(s)
Células Dendríticas , Neoplasias , Humanos , Linfocitos T Citotóxicos , Antígenos , Presentación de Antígeno , Neoplasias/terapia , Inmunoterapia Activa , Microambiente Tumoral
15.
Exploration (Beijing) ; 3(2): 20220147, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37324036

RESUMEN

The importance of mechanical signals in regulating the fate of macrophages is gaining increased attention recently. However, the recently used mechanical signals normally rely on the physical characteristics of matrix with non-specificity and instability or mechanical loading devices with uncontrollability and complexity. Herein, we demonstrate the successful fabrication of self-assembled microrobots (SMRs) based on magnetic nanoparticles as local mechanical signal generators for precise macrophage polarization. Under a rotating magnetic field (RMF), the propulsion of SMRs occurs due to the elastic deformation via magnetic force and hydrodynamics. SMRs perform wireless navigation toward the targeted macrophage in a controllable manner and subsequently rotate around the cell for mechanical signal generation. Macrophages are eventually polarized from M0 to anti-inflammatory related M2 phenotypes by blocking the Piezo1-activating protein-1 (AP-1)-CCL2 signaling pathway. The as-developed microrobot system provides a new platform of mechanical signal loading for macrophage polarization, which holds great potential for precise regulation of cell fate.

16.
Cell Rep ; 42(7): 112691, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37354460

RESUMEN

Copy-number variations (CNVs) of the human 16p11.2 genetic locus are associated with neurodevelopmental disorders, including autism spectrum disorders (ASDs) and schizophrenia. However, it remains largely unclear how this locus is involved in the disease pathogenesis. Doc2α is localized within this locus. Here, using in vivo and ex vivo electrophysiological and morphological approaches, we show that Doc2α-deficient mice have neuronal morphological abnormalities and defects in neural activity. Moreover, the Doc2α-deficient mice exhibit social and repetitive behavioral deficits. Furthermore, we demonstrate that Doc2α functions in behavioral and neural phenotypes through interaction with Secretagogin (SCGN). Finally, we demonstrate that SCGN functions in social/repetitive behaviors, glutamate release, and neuronal morphology of the mice through its Doc2α-interacting activity. Therefore, Doc2α likely contributes to neurodevelopmental disorders through its interaction with SCGN.


Asunto(s)
Trastorno del Espectro Autista , Esquizofrenia , Animales , Humanos , Ratones , Trastorno del Espectro Autista/genética , Deleción Cromosómica , Cromosomas Humanos Par 16/genética , Variaciones en el Número de Copia de ADN/genética , Esquizofrenia/genética , Secretagoginas/genética , Conducta Social
17.
Chemistry ; 29(43): e202301015, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37191050

RESUMEN

Here the supramolecular liquid crystalline (LC) phase behavior of a series of fullerene block molecules was investigated regarding spacer length, alkyl tail length and temperature. These compounds exhibit several lamellar LC phases with different packings of self-organized fullerene two-dimensional (2D) crystals. With a short hexamethylene spacer, they form sandwich-like structures with triple or quadruple fullerene layers. By increasing the spacer length to 10 or 12 carbons, a composite layers-in-lamella superlattice structure with alternating soft hydrocarbon single layers and fullerene single or double layers was obtained. As the molecular configurational freedom between incompatible moieties was enhanced by the elongated spacer, the required cross-sectional fullerene-to-hydrocarbon ratio for the superlattice could be achieved despite of different volume fractions of the blocks. The superlattice phase range is efficiently widened by the design principle of constructing LC molecules with a long spacer, which also provides a facile way to tailor novel superstructures.

18.
Adv Healthc Mater ; 12(24): e2300737, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37199571

RESUMEN

Neutrophil activation is a hallmark of the immune response. Approaches to identify neutrophil activation in real time are necessary but are still lacking. In this study, magnetic Spirulina micromotors are used as label-free probes that exhibit differences in motility under different neutrophil activation states. This is correlated with different secretions into the extracellular environment by activated/non-activated cells and local environmental viscoelasticity. The micromotor platform can bypass non-activated immune cells while being stopped by activated cells. Thus, the micromotors can serve as label-free biomechanical probes of the immune cell state. They can detect the activation state of target immune cells in real time and with single-cell precision, which provides new ideas for the diagnosis and treatment of diseases while deepening understanding of the biomechanics of activated immune cells.


Asunto(s)
Activación Neutrófila , Sondas Moleculares , Fenómenos Biomecánicos
19.
Int J Cardiovasc Imaging ; 39(7): 1357-1366, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37099062

RESUMEN

Coronary artery ectasia (CAE) in adults is often caused by atherosclerotic plaques. CAE can affect atherosclerotic plaques through hemodynamic changes. However, no study has evaluated the characteristics of CAE with atherosclerotic plaques. Therefore, we aimed to disclose the characteristics of atherosclerotic plaques in patients with CAE using optical coherence tomography (OCT). We evaluated patients with CAE, confirmed by coronary angiography, who underwent pre-intervention OCT between April 2015 and April 2021. Each millimeter of the OCT images was analyzed to assess the characteristics of CAEs, plaque phenotypes, and plaque vulnerability. A total of 286 patients (344 coronary vessels) met our criteria, 82.87% of whom were men. Right coronary artery lesions were the most common, comprising 44.48% (n = 153) of the total. We found 329 CAE vessels with plaques, accounting for 95.64% of the coronary vessels. After grouping CAEs and plaques by their relative positions, we found that the length of plaques within CAE lesions was longer than that of plaques in other sites (P < 0.001). Plaques within CAE lesions had greater maximum lipid angles and lipid indexes (P = 0.007, P = 0.004, respectively) than those on other sites. This study revealed the most common vascular and morphological characteristics of CAE. While the accompanying plaques were not affected by the location or morphology of the CAE vessels, they were affected by their position relative to the CAE lesion.


Asunto(s)
Aneurisma Coronario , Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Enfermedades Vasculares , Humanos , Placa Aterosclerótica/patología , Tomografía de Coherencia Óptica/métodos , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Dilatación Patológica , Valor Predictivo de las Pruebas , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/patología , Angiografía Coronaria/métodos , Aneurisma Coronario/patología , Lípidos
20.
Acta Pharm Sin B ; 13(2): 517-541, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36873176

RESUMEN

Attributed to the miniaturized body size and active mobility, micro- and nanomotors (MNMs) have demonstrated tremendous potential for medical applications. However, from bench to bedside, massive efforts are needed to address critical issues, such as cost-effective fabrication, on-demand integration of multiple functions, biocompatibility, biodegradability, controlled propulsion and in vivo navigation. Herein, we summarize the advances of biomedical MNMs reported in the past two decades, with particular emphasis on the design, fabrication, propulsion, navigation, and the abilities of biological barriers penetration, biosensing, diagnosis, minimally invasive surgery and targeted cargo delivery. Future perspectives and challenges are discussed as well. This review can lay the foundation for the future direction of medical MNMs, pushing one step forward on the road to achieving practical theranostics using MNMs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...