Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
J Biopharm Stat ; : 1-13, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832723

RESUMEN

Due to increased use of gene sequencing techniques, understanding of cancer on a molecular level has evolved, in terms of both diagnosis and evaluation in response to initial therapies. In parallel, clinical trials meant to evaluate molecularly-driven interventions through assessment of both treatment effects and putative predictive biomarker effects are being employed to advance the goals of precision medicine. Basket trials investigate one or more biomarker-targeted therapies across multiple cancer types in a tumor location agnostic fashion. The review article offers an overview of the traditional forms of such designs, the practical challenges facing each type of design, and then review novel adaptations proposed in the last few years, categorized into Bayesian and Classical Frequentist perspectives. The review article concludes by summarizing potential advantages and limitations of the new trial design solutions.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38483751

RESUMEN

There are two dominant approaches to implementing permanent supportive housing (PSH), namely place-based (PB) and scattered-site (SS). Formal guidance does not distinguish between these two models and only specifies that PSH should be reserved for those who are most vulnerable with complex health needs. To consider both system- and self-selection factors that may affect housing assignment, this study applied the Gelberg-Anderson behavioral model for vulnerable populations to compare predisposing, enabling, and need factors among people experiencing homelessness (PE) by whether they were assigned to PB-PSH (n = 272) or SS-PSH (n = 185) in Los Angeles County during the COVID-19 pandemic. This exploratory, observational study also included those who were approved but did not receive PSH (n = 94). Results show that there are notable differences between (a) those who received PSH versus those who did not, and (b) those in PB-PSH versus SS-PSH. Specifically, PEH who received PSH were more likely to be white, US-born, have any physical health condition, and have lower health activation scores. PEH who received PB- versus SS-PSH were more likely to be older, Black, have any alcohol use disorder, and have higher health activation scores. These findings suggest that homeless service systems may consider PB-PSH more appropriate for PEH with higher needs but also raises important questions about how race may be a factor in the type of PSH that PEH receive and whether PSH is received at all.

4.
Exp Ther Med ; 27(1): 36, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38125357

RESUMEN

Local ulcerative cutaneous hemorrhage resulting from breast cancer profoundly effects the quality of life of patients, at times even posing a threat to life. While early diagnosis rates of breast cancer have shown improvement, some patients may present at an advanced stage upon consultation. Presently, there is no standardized treatment approach for these patients. In this context, the present study presented two case studies detailing the use of interventional embolization chemotherapy for addressing severe local ulcerative hemorrhage associated with breast cancer. Post-treatment, there was a notable amelioration in the mammary ulceration among the patients, an elevated hemoglobin level compared with baseline and a consequent enhancement in their overall quality of life. These cases may serve as valuable references for the management of such clinical situations.

5.
Sensors (Basel) ; 23(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37960407

RESUMEN

Alzheimer's disease (AD), a neuropsychiatric disorder, continually arises in the elderly. To date, no targeted medications have been developed for AD. Early and fast diagnosis of AD plays a pivotal role in identifying potential AD patients, enabling timely medical interventions, and mitigating disease progression. Computer-aided diagnosis (CAD) becomes possible with the burgeoning of deep learning. However, the existing CAD models for processing 3D Alzheimer's disease images usually have the problems of slow convergence, disappearance of gradient, and falling into local optimum. This makes the training of 3D diagnosis models need a lot of time, and the accuracy is often poor. In this paper, a novel 3D aggregated residual network with accelerated mirror descent optimization is proposed for diagnosing AD. First, a novel unbiased subgradient accelerated mirror descent (SAMD) optimization algorithm is proposed to speed up diagnosis network training. By optimizing the nonlinear projection process, our proposed algorithm can avoid the occurrence of the local optimum in the non-Euclidean distance metric. The most notable aspect is that, to the best of our knowledge, this is the pioneering attempt to optimize the AD diagnosis training process by improving the optimization algorithm. Then, we provide a rigorous proof of the SAMD's convergence, and the convergence of SAMD is better than any existing gradient descent algorithms. Finally, we use our proposed SAMD algorithm to train our proposed 3D aggregated residual network architecture (ARCNN). We employed the ADNI dataset to train ARCNN diagnostic models separately for the AD vs. NC task and the sMCI vs. pMCI task, followed by testing to evaluate the disease diagnostic outcomes. The results reveal that the accuracy can be improved in diagnosing AD, and the training speed can be accelerated. Our proposed method achieves 95.4% accuracy in AD diagnosis and 79.9% accuracy in MCI diagnosis; the best results contrasted with several state-of-the-art diagnosis methods. In addition, our proposed SAMD algorithm can save about 19% of the convergence time on average in the AD diagnosis model compared with the gradient descent algorithms, which is very momentous in clinic.


Asunto(s)
Enfermedad de Alzheimer , Imagen por Resonancia Magnética , Humanos , Anciano , Imagen por Resonancia Magnética/métodos , Enfermedad de Alzheimer/diagnóstico , Diagnóstico por Computador/métodos , Algoritmos , Progresión de la Enfermedad , Neuroimagen
6.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4137-4146, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37802782

RESUMEN

Previous studies have shown that high blood glucose-induced chronic microinflammation can cause inflammatory podocyte injury in patients with diabetic kidney disease(DKD). Therein, necroptosis is a new form of podocyte death that is closely associated with renal fibrosis(RF). To explore the effects and mechanisms in vivo of total flavones of Abelmoschus manihot(TFA), an extract from traditional Chinese herbal medicine Abelmoschus manihot for treating kidney diseases, on podocyte necroptosis and RF in DKD, and to further reveal its scientific connotation with multi-pathway and multi-target, the authors randomly divided all rats into four groups: a namely normal group, a model group, a TFA group and a rapamycin(RAP) group. After the modified DKD rat models were successfully established, four group rats were given double-distilled water, TFA suspension and RAP suspension, respectively by gavage every day. At the end of the 4th week of drug treatment, all rats were sacrificed, and the samples of their urine, blood and kidneys were collected. And then, the various indicators related to podocyte necroptosis and RF in the DKD model rats were observed, detected and analyzed, respectively. The results indicated that, general condition, body weight(BW), serum creatinine(Scr), urinary albumin(UAlb), and kidney hypertrophy index(KHI) in these modified DKD model rats were both improved by TFA and RAP. Indicators of RF, including glomerular histomorphological characteristics, fibronectin(FN) and collagen type Ⅰ(collagen Ⅰ) staining extent in glomeruli, as well as the protein expression levels of FN, collagen Ⅰ, transforming growth factor-ß1(TGF-ß1) and Smad2/3 in the kidneys were improved respectively by TFA and RAP. Podocyte damage, including foot process form and the protein expression levels of podocin and CD2AP in the kidneys was improved by TFA and RAP. In addition, tumor necrosis factor-α(TNF-α)-mediated podocyte necroptosis in the kidneys, including the morphological characteristics of podocyte necroptosis, the extent and levels of the protein expression of TNF-α and phosphorylated mixed lineage kinase domain like pseudokinase(p-MLKL) was improved respectively by TFA and RAP. Among them, RAP had the better effect on p-MLKL. More importantly, the activation of the receptor interacting serine/threonine protein kinase 1(RIPK1)/RIPK3/MLKL signaling axis in the kidneys, including the expression levels of its key signaling molecules, such as phosphorylated receptor interacting serine/threonine protein kinase 1(p-RIPK1), p-RIPK3, p-MLKL and cysteinyl aspartate specific proteinase-8(caspase-8) was improved respectively by TFA and RAP. Among them, the effect of TFA on p-RIPK1 was superior. On the whole, in this study, the authors demonstrated that TFA alleviates podocyte necroptosis and RF in DKD through inhibiting the activation of the TNF-α-mediated RIPK1/RIPK3/MLKL signaling axis in diabetic kidneys. The authors' findings provide new pharmacological evidence to reveal the scientific connotation of TFA in treating RF in DKD in more depth.


Asunto(s)
Abelmoschus , Diabetes Mellitus , Nefropatías Diabéticas , Flavonas , Podocitos , Humanos , Ratas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Flavonas/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Fibrosis , Treonina/farmacología , Colágeno/metabolismo , Serina/farmacología , Diabetes Mellitus/tratamiento farmacológico
7.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3014-3021, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37381959

RESUMEN

Recent studies have shown that the occurrence and development of common liver diseases, including non-alcoholic fatty liver disease, cirrhosis, and liver cancer, are related to liver aging(LA). Therefore, to explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a traditional classic prescription in improving LA with multiple targets, the present study randomly divided 24 rats into a normal group, a model group, a DHZCP group, and a vitamin E(VE) group, with six rats in each group. The LA model was induced by continuous intraperitoneal injection of D-galactose(D-gal) in rats. For the LA model rats, the general situation was evaluated by aging phenotype and body weight(BW). LA was assessed by the pathological characteristics of hepatocyte senescence, hepatic function indexes, the staining characteristics of phosphorylated histone family 2A variant(γ-H2AX), and the expression levels of cell cycle arrest proteins(P21, P53, P16) and senescence-associated secretory phenotype(SASP) in the liver. The activation of the reactive oxygen species(ROS)-mediated phosphatidylinositol-3 kinase(PI3K)/protein kinase B(Akt)/forkhead box protein O4(FoxO4) signaling pathway was estimated by hepatic ROS expression feature and the protein expression levels of the key signaling molecules in the PI3K/Akt/FoxO4 signaling pathway. The results showed that after the treatment with DHZCP or VE for 12 weeks, for the DHZCP and VE groups, the characterized aging phenotype, BW, pathological characteristics of hepatocyte senescence, hepatic function indexes, relative expression of ROS in the liver, protein expression levels of key signaling molecules including p-PI3K, p-Akt, and FoxO4 in the liver, staining characteristics of γ-H2AX, and the protein expression levels of P16, P21, P53, interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in the liver were improved, and the effects of DHZCP and VE were similar. Based on the D-gal-induced LA model in rats, this study demonstrates that DHZCP can ameliorate LA with multiple targets in vivo, and its effects and mechanism are related to regulating the activation of the ROS-mediated PI3K/Akt/FoxO4 signaling pathway in the liver. These findings are expected to provide new pharmacological evidence for the treatment of DHZCP in aging-related liver diseases.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Animales , Ratas , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Especies Reactivas de Oxígeno , Proteína p53 Supresora de Tumor/genética , Transducción de Señal , Hígado , Envejecimiento , Proteínas de Ciclo Celular , Interleucina-6
8.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2646-2656, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282926

RESUMEN

This study aimed to explore the effects and mechanisms of total flavones of Abelmoschus manihot(TFA), the extracts from traditional Chinese medicine indicated for kidney diseases, on insulin resistance(IR) and podocyte epithelial-mesenchymal transition(EMT) in diabetic kidney disease(DKD), and further to reveal the scientific connotation. Thirty-two rats were randomly divided into a normal group, a model group, a TFA group, and a rosiglitazone(ROS) group. The modified DKD model was induced in rats by methods including high-fat diet feeding, unilateral nephrectomy, and streptozotocin(STZ) intraperitoneal injection. After modeling, the rats in the four groups were given double-distilled water, TFA suspension, and ROS suspension correspondingly by gavage every day. At the end of the 8th week of drug administration, all rats were sacrificed, and the samples of urine, blood, and kidney tissues were collected. The parameters and indicators related to IR and podocyte EMT in the DKD model rats were examined and observed, including the general condition, body weight(BW) and kidney weight(KW), the biochemical parameters and IR indicators, the protein expression levels of the key signaling molecules and structural molecules of slit diaphragm in the renal insulin receptor substrate(IRS) 1/phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway, foot process form and glomerular basement membrane(GBM) thickness, the expression of the marked molecules and structural molecules of slit diaphragm in podocyte EMT, and glomerular histomorphological characteristics. The results showed that for the DKD model rats, both TFA and ROS could improve the general condition, some biochemical parameters, renal appearance, and KW. The ameliorative effects of TFA and ROS were equivalent on BW, urinary albumin(UAlb)/urinary creatinine(UCr), serum creatinine(Scr), triglyceride(TG), and KW. Secondly, they could both improve IR indicators, and ROS was superior to TFA in improving fast insulin(FIN) and homeostasis model assessment of insulin resistance(HOMA-IR). Thirdly, they could both improve the protein expression levels of the key signaling molecules in the IRS1/PI3K/Akt pathway and glomerulosclerosis in varying degrees, and their ameliorative effects were similar. Finally, both could improve podocyte injury and EMT, and TFA was superior to ROS. In conclusion, this study suggested that podocyte EMT and glomerulosclerosis could be induced by IR and the decreased activation of the IRS1/PI3K/Akt pathway in the kidney in DKD. Similar to ROS, the effects of TFA in inhibiting podocyte EMT in DKD were related to inducing the activation of the IRS1/PI3K/Akt pathway and improving IR, which could be one of the scientific connotations of TFA against DKD. This study provides preliminary pharmacological evidence for the development and application of TFA in the field of diabetic complications.


Asunto(s)
Abelmoschus , Diabetes Mellitus , Nefropatías Diabéticas , Flavonas , Resistencia a la Insulina , Podocitos , Ratas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Abelmoschus/química , Ratas Sprague-Dawley , Transición Epitelial-Mesenquimal , Flavonas/farmacología , Especies Reactivas de Oxígeno
9.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2657-2666, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282927

RESUMEN

Renal tubular injury in patients with diabetic kidney disease(DKD) may be accompanied by glomerular and microvascular diseases. It plays a critical role in the progression of renal damage in DKD, and is now known as diabetic tubulopathy(DT). To explore the multi-targeted therapeutic effects and pharmacological mechanisms in vivo of total flavones of Abelmoschus manihot(TFA), an extract from traditional Chinese medicine for treating kidney disease, in attenuating DT, the authors randomly divided all rats into four groups: a normal control group(normal group), a DT model group(model group), a DT model+TFA-treated group(TFA group) and a DT model+rosiglitazone(ROS)-treated group(ROS group). The DT rat model was established based on the DKD rat model by means of integrated measures. After successful modeling, the rats in the four groups were continuously given double-distilled water, TFA suspension, and ROS suspension, respectively by gavage every day. After 6 weeks of treatment, all rats were sacrificed, and the samples of their urine, blood, and kidneys were collected. The effects of TFA and ROS on various indicators related to urine and blood biochemistry, renal tubular injury, renal tubular epithelial cell apoptosis and endoplasmic reticulum stress(ERS), as well as the activation of the protein kinase R-like endoplasmic reticulum kinase(PERK)-eukaryotic translation initiation factor 2α(eIF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP) signaling pathway in the kidney of the DT model rats were investigated. The results indicated that hypertrophy of renal tubular epithelial cells, renal tubular hyperplasia and occlusion, as well as interstitial extracellular matrix and collagen deposition occurred in the DT model rats. Moreover, significant changes were found in the expression degree and the protein expression level of renal tubular injury markers. In addition, there was an abnormal increase in tubular urine proteins. After TFA or ROS treatment, urine protein, the characteristics of renal tubular injury, renal tubular epithelial cell apoptosis and ERS, as well as the activation of the PERK-eIF2α-ATF4-CHOP signaling pathway in the kidney of the DT model rats were improved to varying degrees. Therein, TFA was superior to ROS in affecting the pathological changes in renal tubule/interstitium. In short, with the DT model rats, this study demonstrated that TFA could attenuate DT by multiple targets through inhibiting renal tubular ERS-induced cell apoptosis in vivo, and its effect and mechanism were related to suppressing the activation of the PERK-eIF2α-ATF4-CHOP signaling pathway in the kidney. These findings provided preliminary pharmacological evidence for the application of TFA in the clinical treatment of DT.


Asunto(s)
Abelmoschus , Diabetes Mellitus , Nefropatías Diabéticas , Flavonas , Ratas , Animales , Especies Reactivas de Oxígeno/metabolismo , Flavonas/farmacología , Estrés del Retículo Endoplásmico , Nefropatías Diabéticas/tratamiento farmacológico , Apoptosis
10.
Artículo en Inglés | MEDLINE | ID: mdl-36644442

RESUMEN

Background: Sepsis is a common complication of severe trauma, burns, infection, or major surgery. This disease-related end-organ dysfunction results from systemic inflammatory response syndrome (SIRS). Acute kidney damage (AKI), also known as acute renal failure, is one of the most frequent and serious sequelae of sepsis. Nuclear transcription factor-κB (NF-κB) regulates the transcription of inflammation-related genes and operates as a mediator in the immune system. While parthenolide (PTL) has been reported to prevent harmful inflammatory reactions, its effects on sepsis-associated AKI are unknown. The current study investigates the effects of PTL in sepsis-associated AKI using cell and cecal ligation and puncture (CLP) models. Methods: Lipopolysaccharide (LPS)-stimulated rat glomerular mesangial cells were treated with 10 µM PTL. Inflammatory mediators, including TNF-α, IL-6, and IL-1ß, in the culture supernatants were measured by ELISA, and NF-κB levels were assessed by qPCR. After the generation of the septic CLP model, rats were intraperitoneally injected with 500 g/kg PTL and were euthanized after 72 h. Serum and kidney samples were analyzed. Results: TNF-α, IL-1ß, and IL-6 levels were elevated after LPS treatment of rat glomerular mesangial cells (p=0.004, p=0.002, and p=0.004, respectively) but were significantly reduced in the PTL treatment group (p ≤ 0.001, p=0.01, and p ≤ 0.001). NF-κB p65 levels were also increased after LPS treatment in this group and were reduced in the PTL treatment group. PTL treatment also reduced kidney damage after CLP induction, as shown by histological analysis and reductions in the levels of BUN, Cre, KIM-1, and NAGL. CLP-induced kidney inflammation together with increased levels of proinflammatory cytokines and inflammatory-related proteins. The elevated levels of renal TNF-α, IL-6, and IL-1ß were downregulated after PTL treatment. The PTL treatment also reduced the CLP-induced activation of NF-κB p65 in the damaged kidneys. Conclusion: PTL reduced inflammation induced by CLP-induced AKI in rat models and LPS-induced damage to glomerular mesangial cells by suppressing NF-κB signaling.

11.
Anat Rec (Hoboken) ; 306(12): 3199-3213, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36440653

RESUMEN

Ferroptosis-related renal tubular lesions play important roles in diabetic kidney disease (DKD) progression, and these pathophysiological responses are collectively described as diabetic tubulopathy (DT), which lacks an effective treatment. Total flavones from Abelmoschus manihot (TFA), a natural extract that extensively used in patients with chronic kidney disease, has been used for treatment of renal tubular injury in DKD; however, whether TFA alleviates DT and its potential mechanisms remain unclear. Hence, we investigated the effects of TFA, compared to dapagliflozin, in DT management both in vivo and in vitro, using a DKD rat model and the NRK-52 E cells. Following modeling, the DKD rats received TFA, dapagliflozin, or vehicle for 6 weeks. For the in vitro research, the NRK-52 E cells were exposed to advanced glycation end products (AGEs) plus ferrostatin-1 (Fer-1), dapagliflozin, or TFA. Changes in biochemical parameters and renal tubular injury were analyzed in vivo, while changes in ferroptosis of renal tubular cells and the ferroptosis-related proteins expression were analyzed both in vivo and in vitro. We found that TFA and dapagliflozin improved biochemical parameters, renal tubular injury, and ferroptosis in the DKD rats. Moreover, TFA and dapagliflozin inhibited ferroptosis by ameliorating iron deposition, lipid peroxidation capacity, and ferroptosis-related proteins expression in vitro, which was similar to the effects of Fer-1. Collectively, this study demonstrated that TFA treated DT in a manner similar to dapagliflozin by inhibiting ferroptosis of renal tubular cells via improving iron deposition and antioxidant capacity. Our findings provide new pharmacological evidence for TFA application in DT treatment.


Asunto(s)
Abelmoschus , Diabetes Mellitus , Nefropatías Diabéticas , Ferroptosis , Flavonas , Ratas , Humanos , Animales , Flavonas/farmacología , Flavonas/uso terapéutico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Hierro/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico
12.
Polymers (Basel) ; 14(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36365545

RESUMEN

Due to their safety and sustainability, polysaccharides such as cellulose and chitosan have great potential to be the matrix of gel polymer electrolytes (GPE) for lithium-based batteries. However, they easily form hydrogels due to the large numbers of hydrophilic hydroxyl or amino functional groups within their macromolecules. Therefore, a polysaccharide-based amphiphilic gel, or organogel, is urgently necessary to satisfy the anhydrous requirement of lithium ion batteries. In this study, a PEGylated chitosan was initially designed using a chemical grafting method to make an GPE for lithium ion batteries. The significantly improved affinity of PEGylated chitosan to organic liquid electrolyte makes chitosan as a GPE for lithium ion batteries possible. A reasonable ionic conductivity (1.12 × 10-3 S cm-1) and high lithium ion transport number (0.816) at room temperature were obtained by replacing commercial battery separator with PEG-grafted chitosan gel film. The assembled Li/GPE/LiFePO4 coin cell also displayed a high initial discharge capacity of 150.8 mA h g-1. The PEGylated chitosan-based GPE exhibits great potential in the field of energy storage.

13.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4119-4127, 2022 Aug.
Artículo en Chino | MEDLINE | ID: mdl-36046902

RESUMEN

To explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a classical prescription, in improving testicular aging(TA) in vivo, the authors randomly divided 24 male rats into four groups: the normal, model, DHZCP and vitamin E(VE) groups. The TA rat model was established by continuous gavage of D-galactose(D-gal). During the experiment, the rats in the DHZCP and VE groups were given DHZCP suspension and VE suspension, respectively by gavage, while those in the normal and model groups were gavaged saline separately every day. After the co-administration of D-gal and various drugs for 60 days, all rats were sacrificed, and their blood and testis were collected. Further, various indexes related to TA and necroptosis of testicular cells in the model rats were examined and investigated, which included the aging phenotype, total testicular weight, testicular index, histopathological features of testis, number of spermatogenic cells, sex hormone level, expression characteristics of reactive oxygen species(ROS) in testis, expression levels and characteristics of cyclins in testis, and protein expression levels of the key molecules in receptor-interacting serine/threonine-protein kinase 1(RIPK1)/receptor-interacting serine/threonine-protein kinase 3(RIPK3)/mixed lineage kinase domain like pseudokinase(MLKL) signaling pathway in each group. The results showed that, for the TA model rats, both DHZCP and VE improved their aging phenotype, total testicular weight, testicular index, pathological features of testis, number of spermatogenic cells, serum testosterone and follicle stimulating hormone levels, expression characteristics of ROS and protein expression levels and characteristics of P21 and P53 in testis. In addition, DHZCP and VE improved the protein expression levels of the key molecules in RIPK1/RIPK3/MLKL signaling pathway in testis of the model rats. Specifically, DHZCP was better than VE in the improvement of RIPK3. In conclusion, in this study, the authors found that DHZCP, similar to VE, ameliorated D-gal-induced TA in model rats in vivo, and its mechanism was related to reducing necroptosis of testicular cells by inhibiting the activation of RIPK1/RIPK3/MLKL signaling pathway. This study provided preliminary pharmacological evidence for the development and application of classical prescriptions in the field of men's health.


Asunto(s)
Necroptosis , Testículo , Envejecimiento , Animales , Medicamentos Herbarios Chinos , Masculino , Proteínas Quinasas/genética , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/farmacología , Serina/farmacología , Transducción de Señal , Treonina/farmacología
14.
Comput Biol Med ; 148: 105901, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35908497

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly. Early diagnosis of AD plays a vital role in slowing down the progress of AD because there is no effective drug to treat the disease. Some deep learning models have recently been presented for AD diagnosis and have more satisfactory performance than classic machine learning methods. Nevertheless, most of the existing computer-aided diagnostic models used neuroimaging features for diagnosis, ignoring patients' clinical and biological information. This makes the AD diagnosis inaccurate. In this study, we propose a novel multimodal feature transformation and fusion model for AD diagnosis. The feature transformation aims to avoid the difference in feature dimensions between different modal data and further mine the significant features for AD diagnosis. A geometric algebra-based feature extension method is proposed to obtain different levels of high-dimensional features from patients' clinical and personal biological data. Then, an influence degree-based feature filtration algorithm is proposed to filtrate those features that have no apparent guiding significance for AD diagnosis. Finally, an ANN (Artificial Neural Network)-based framework is designed to fuse transformed features with neuroimaging features extracted by CNN (Convolutional Neural Network) for AD diagnosis. The more in-depth feature mining of patients' clinical information and biological information can significantly improve the performance of computer-aided AD diagnosis. The experiments are obtained on the ADNI dataset. Our proposed model can converge faster and achieves 96.2% accuracy in AD diagnostic task and 87.4% accuracy in MCI (Mild Cognitive Impairment) diagnostic task. Compared with other methods, our proposed approach has an excellent performance in AD diagnosis and surpasses SOTA (state-of-the-art) methods. Therefore, our model can provide more reasonable suggestions for clinicians to diagnose and treat disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Humanos , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Neuroimagen
15.
Artículo en Inglés | MEDLINE | ID: mdl-35698642

RESUMEN

Background: Sepsis is defined as a host inflammatory response to infection that can result in end-organ dysfunction. One of the most common consequences of sepsis is acute kidney injury (AKI). Panax notoginseng powder (PNP) has been previously reported to protect against overactive inflammation process. However, the potential effect of PNP on septic AKI is poorly described. The current study was conducted to investigate the protective effects of PNP in septic AKI rats. Methods: A model of septic AKI was established on male SD rats by using the cecal ligation and puncture procedure. PNP was administrated by gavage after the cecal ligation and puncture (CLP) procedure, and the mice were sacrificed at 6, 12, and 72 h after induction of sepsis. The serum and kidney samples were collected and assayed for biochemical tests, histopathological staining, inflammation, and apoptosis-related gene/protein expression. In addition, 15 rats in each group were used to calculate the 7-day survival rate. Results: CLP-induced kidney injury was observed by the histopathological score, which markedly was attenuated by PNP treatment. Consistently, PNP intervention significantly alleviated the elevated levels of serum creatinine and blood urea nitrogen in CLP-induced sepsis rats. The CLP procedure also triggered proinflammatory cytokine production and increased the expression of various inflammation-related proteins in the kidneys. However, PNP inhibited the renal expression of IL-18, IL-1ß, TNF-α, and IL-6 to substantially improve inflammatory response. Mechanistically, CLP induced the increase of the NF-κB p65 level in the injured kidneys, while PNP notably inhibited the corresponding protein expression. Conclusion: PNP attenuated kidney inflammation to protect against CLP-induced septic AKI in rats via inhibiting the NF-κB signaling pathway.

16.
Front Pharmacol ; 13: 790937, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370636

RESUMEN

Background: Fucoidan (FPS) has been widely used to treat renal fibrosis (RF) in patients with diabetic kidney disease (DKD); however, the precise therapeutic mechanisms remain unclear. Recently, research focusing on inflammation-derived podocyte pyroptosis in DKD has attracted increasing attention. This phenomenon is mediated by the activation of the nucleotide-binding oligomerization domain (Nod)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, leading to RF during DKD progression. Therefore, we designed a series of experiments to investigate the ameliorative effects of FPS on RF in DKD and the mechanisms that are responsible for its effect on NLRP3 inflammasome-mediated podocyte pyroptosis in the diabetic kidney. Methods: The modified DKD rat models were subjected to uninephrectomy, intraperitoneal injection of streptozotocin, and a high-fat diet. Following induction of renal injury, the animals received either FPS, rapamycin (RAP), or a vehicle for 4 weeks. For in vitro research, we exposed murine podocytes to high glucose and MCC950, an NLRP3 inflammasome inhibitor, with or without FPS or RAP. Changes in the parameters related to RF and inflammatory podocyte injury were analyzed in vivo. Changes in podocyte pyroptosis, NLRP3 inflammasome activation, and activation of the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin complex 1 (mTORC1)/NLRP3 signaling axis involved in these changes were analyzed in vivo and in vitro. Results: FPS and RAP ameliorated RF and inflammatory podocyte injury in the DKD model rats. Moreover, FPS and RAP attenuated podocyte pyroptosis, inhibited NLRP3 inflammasome activation, and regulated the AMPK/mTORC1/NLRP3 signaling axis in vivo and in vitro. Notably, our data showed that the regulative effects of FPS, both in vivo and in vitro, on the key signaling molecules, such as p-AMPK and p-raptor, in the AMPK/mTORC1/NLRP3 signaling axis were superior to those of RAP, but similar to those of metformin, an AMPK agonist, in vitro. Conclusion: We confirmed that FPS, similar to RAP, can alleviate RF in DKD by inhibiting NLRP3 inflammasome-mediated podocyte pyroptosis via regulation of the AMPK/mTORC1/NLRP3 signaling axis in the diabetic kidney. Our findings provide an in-depth understanding of the pathogenesis of RF, which will aid in identifying precise targets that can be used for DKD treatment.

17.
Brain Res ; 1775: 147711, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34793756

RESUMEN

Traumatic brain injury (TBI) is a brain injury resulting from blunt mechanical external forces, which is a crucial public health and socioeconomic problem worldwide. TBI is one of the leading causes of death or disability. The primary injury of TBI is generally irreversible. Secondary injury caused by neuroinflammation could result in exacerbation of patients, which indicated that anti-inflammation and immunomodulatory were necessary for the treatment of TBI. Accumulated evidence reveals that the transplantation of umbilical cord mesenchymal stem cells (UCMSCs) could regulate the microenvironment in vivo and keep a balance of helper T 17(Th17)/ regulatory T cell (Treg). Therefore, it is reasonable to hypothesize that the UCMSCs could repair neurological impairment by maintaining the balance of Th17/Treg after TBI. In the study, we observed the phenomenon of trans-differentiation of T lymphocytes into Th17 cells after TBI. Rats were divided into Sham, TBI, and TBI + UCMSCs groups to explore the effects of the UCMSCs. The results manifested that trans-differentiation of Th17 into Treg was facilitated by UCMSCs, which was followed by promotion of neurological recovery and improvement of learning and memory in TBI rats. Furthermore, UCMSCs decreased the phosphorylation of nuclear factor-kappa B (NF-κB) and increased the expression of mothers against decapentaplegic homolog 3 (Smad3) in vivo and vitro experiments. In conclusion, UCMSCs maintained Th17/Treg balance via the transforming growth factor-ß (TGF-ß)/ Smad3/ NF-κB signaling pathway.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Hipocampo/diagnóstico por imagen , Trasplante de Células Madre Mesenquimatosas/métodos , Linfocitos T Reguladores , Células Th17 , Cordón Umbilical/citología , Animales , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Diferenciación Celular/fisiología , Femenino , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Células Madre Mesenquimatosas/citología , Regeneración Nerviosa/fisiología , Ratas , Ratas Sprague-Dawley , Tomografía Computarizada por Rayos X
18.
Front Pharmacol ; 12: 738914, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776959

RESUMEN

Cancer is a leading cause of death, affecting people in both developed and developing countries. It is a challenging disease due to its complicated pathophysiological mechanism. Many anti-cancer drugs are used to treat cancer and reduce mortality rates, but their toxicity limits their administration. Drugs made from natural products, which act as multi-targeted therapy, have the ability to target critical signaling proteins in different pathways. Natural compounds possess pharmacological activities such as anti-cancer activity, low toxicity, and minimum side effects. Panax notoginseng is a medicinal plant whose extracts and phytochemicals are used to treat cancer, cardiovascular disorders, blood stasis, easing inflammation, edema, and pain. P. notoginseng's secondary metabolites target cancer's dysregulated pathways, causing cancer cell death. In this review, we focused on several ginsenosides extracted from P. notoginseng that have been evaluated against various cancer cell lines, with the aim of cancer treatment. Furthermore, an in vivo investigation of these ginsenosides should be conducted to gain insight into the dysregulation of several pathways, followed by clinical trials for the potential and effective treatment of cancer.

19.
Sensors (Basel) ; 21(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34833710

RESUMEN

Alzheimer's disease (AD), the most common type of dementia, is a progressive disease beginning with mild memory loss, possibly leading to loss of the ability to carry on a conversation and respond to environments. It can seriously affect a person's ability to carry out daily activities. Therefore, early diagnosis of AD is conducive to better treatment and avoiding further deterioration of the disease. Magnetic resonance imaging (MRI) has become the main tool for humans to study brain tissues. It can clearly reflect the internal structure of a brain and plays an important role in the diagnosis of Alzheimer's disease. MRI data is widely used for disease diagnosis. In this paper, based on MRI data, a method combining a 3D convolutional neural network and ensemble learning is proposed to improve the diagnosis accuracy. Then, a data denoising module is proposed to reduce boundary noise. The experimental results on ADNI dataset demonstrate that the model proposed in this paper improves the training speed of the neural network and achieves 95.2% accuracy in AD vs. NC (normal control) task and 77.8% accuracy in sMCI (stable mild cognitive impairment) vs. pMCI (progressive mild cognitive impairment) task in the diagnosis of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Neuroimagen
20.
J Food Sci ; 86(12): 5466-5478, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34730235

RESUMEN

Policosanol exhibits a lipid accumulation alleviating effect, but the underlying mechanisms remains unclear. Bile acids are a significant factor in regulating cholesterol and lipid metabolism homeostasis in mammals. This study was aimed to elucidate the alleviating effect and underlying mechanisms of policosanol on hepatic lipid accumulation through bile acid (BA) metabolism. Policosanol supplementation significantly reduced hepatic triglycerides (19.29%), cholesterol (30.38%) in high fat diet (HFD) induced obese mice (P < 0.05). Furthermore, compared with the control group, HFD decreased the levels of total BAs (TBAs, 37.67%) and cholic acid (CA, 62.74%) in the serum of mice (P < 0.05). Meanwhile, compared to HFD group, policosanol also increased the level of secondary BAs (SBAs) and muricholic acids (MCAs, P < 0.05). qRT-PCR combined with protein level analysis revealed that policosanol significantly decreased sterol regulatory element-binding protein (SREBP-1c) and CD36, and increased the expression level of cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and cytochrome P450 Family 27 Subfamily A Member 1 (CYP27A1, P < 0.05). Additionally, in the liver, policosanol was found downregulated the expression of farnesoid X receptor (FXR)-small heterodimer partner (SHP), and activate the Takeda G-coupled protein receptor 5 (TGR5)-adenosine-monophosphate-activated protein kinase (APMK) signaling pathway (P < 0.05). Peroxisome proliferator activated receptor (PPAR)-α, hormone sensitive lipase (HSL), and carnitine palmitoyltransferase (CPT)-1α also significantly increased in HP group (P < 0.05). The aforementioned results reveal that the potential mechanism of policosanol in alleviating liver lipid accumulation is to promote BA synthesis and lipolysis through regulating the cross-talk of the AMPK-FXR-TGR5. New insight for the application of policosanol as an anti-fatty liver functional food ingredient or supplement is also provided. PRACTICAL APPLICATION: Policosanol is an important active component of cereals and insect waxes (15-80%). However, almost no policosanol in refined foods such as clear corn germ oil and wheat flour. This study showed that oral administration of policosanol can significantly reduce triglyceride and cholesterol levels in the liver through affecting AMPK-TGR5-FXR cross-talk, whereas no significant toxicological effect is reported in human and mouse models. This study may provide theoretical support for the theory of dietary structure and the development of dietary supplements to improve lipid metabolism targeting the "bile acid-AMPK-TGR5" pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácidos y Sales Biliares/metabolismo , Alcoholes Grasos/farmacología , Metabolismo de los Lípidos , Hígado/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Lípidos , Ratones , Receptores Citoplasmáticos y Nucleares , Receptores Acoplados a Proteínas G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...