Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37645897

RESUMEN

The human Mitochondrial RNA Splicing 2 protein (MRS2) has been implicated in Mg2+ transport across mitochondrial inner membranes, thus playing an important role in Mg2+ homeostasis critical for mitochondrial integrity and function. However, the molecular mechanisms underlying its fundamental channel properties such as ion selectivity and regulation remain unclear. Here, we present structural and functional investigation of MRS2. Cryo-electron microscopy structures in various ionic conditions reveal a pentameric channel architecture and the molecular basis of ion permeation and potential regulation mechanisms. Electrophysiological analyses demonstrate that MRS2 is a Ca2+-regulated, non-selective channel permeable to Mg2+, Ca2+, Na+ and K+, which contrasts with its prokaryotic ortholog, CorA, operating as a Mg2+-gated Mg2+ channel. Moreover, a conserved arginine ring within the pore of MRS2 functions to restrict cation movements, likely preventing the channel from collapsing the proton motive force that drives mitochondrial ATP synthesis. Together, our results provide a molecular framework for further understanding MRS2 in mitochondrial function and disease.

2.
bioRxiv ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37333420

RESUMEN

The mitochondrial Ca2+ uniporter mediates the crucial cellular process of mitochondrial Ca2+ uptake, which regulates cell bioenergetics, intracellular Ca2+ signaling, and cell death initiation. The uniporter contains the pore-forming MCU subunit, an EMRE protein that binds to MCU, and the regulatory MICU1 subunit, which can dimerize with MICU1 or MICU2 and under resting cellular [Ca2+] occludes the MCU pore. It has been known for decades that spermine, which is ubiquitously present in animal cells, can enhance mitochondrial Ca2+ uptake, but the underlying mechanisms remain unclear. Here, we show that spermine exerts dual modulatory effects on the uniporter. In physiological concentrations of spermine, it enhances uniporter activity by breaking the physical interactions between MCU and the MICU1-containing dimers to allow the uniporter to constitutively take up Ca2+ even in low [Ca2+] conditions. This potentiation effect does not require MICU2 or the EF-hand motifs in MICU1. When [spermine] rises to millimolar levels, it inhibits the uniporter by targeting the pore region in a MICU-independent manner. The MICU1-dependent spermine potentiation mechanism proposed here, along with our previous finding that cardiac mitochondria have very low MICU1, can explain the puzzling observation in the literature that mitochondria in the heart show no response to spermine.

3.
Proc Natl Acad Sci U S A ; 120(16): e2217665120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036971

RESUMEN

The mitochondrial calcium uniporter is a Ca2+ channel that imports cytoplasmic Ca2+ into the mitochondrial matrix to regulate cell bioenergetics, intracellular Ca2+ signaling, and apoptosis. The uniporter contains the pore-forming MCU subunit, an auxiliary EMRE protein, and the regulatory MICU1/MICU2 subunits. Structural and biochemical studies have suggested that MICU1 gates MCU by blocking/unblocking the pore. However, mitoplast patch-clamp experiments argue that MICU1 does not block, but instead potentiates MCU via allosteric mechanisms. Here, we address this direct clash of the proposed MICU1 function. Supporting the MICU1-occlusion mechanism, patch-clamp demonstrates that purified MICU1 strongly suppresses MCU Ca2+ currents, and this inhibition is abolished by mutating the MCU-interacting K126 residue. Moreover, a membrane-depolarization assay shows that MICU1 prevents MCU-mediated Na+ flux into intact mitochondria under Ca2+-free conditions. Examining the observations underlying the potentiation model, we found that MICU1 occlusion was not detected in mitoplasts not because MICU1 cannot block, but because MICU1 dissociates from the uniporter complex. Furthermore, MICU1 depletion reduces uniporter transport not because MICU1 can potentiate MCU, but because EMRE is down-regulated. These results firmly establish the molecular mechanisms underlying the physiologically crucial process of uniporter regulation by MICU1.


Asunto(s)
Calcio , Proteínas de Transporte de Membrana Mitocondrial , Calcio/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Canales de Calcio/metabolismo , Membranas Mitocondriales/metabolismo , Calcio de la Dieta , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo
4.
Sci Adv ; 8(27): eabo2431, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35857470

RESUMEN

Bacteria commonly form aggregates in a range of coral species [termed coral-associated microbial aggregates (CAMAs)], although these structures remain poorly characterized despite extensive efforts studying the coral microbiome. Here, we comprehensively characterize CAMAs associated with Stylophora pistillata and quantify their cell abundance. Our analysis reveals that multiple Endozoicomonas phylotypes coexist inside a single CAMA. Nanoscale secondary ion mass spectrometry imaging revealed that the Endozoicomonas cells were enriched with phosphorus, with the elemental compositions of CAMAs different from coral tissues and endosymbiotic Symbiodiniaceae, highlighting a role in sequestering and cycling phosphate between coral holobiont partners. Consensus metagenome-assembled genomes of the two dominant Endozoicomonas phylotypes confirmed their metabolic potential for polyphosphate accumulation along with genomic signatures including type VI secretion systems allowing host association. Our findings provide unprecedented insights into Endozoicomonas-dominated CAMAs and the first direct physiological and genomic linked evidence of their biological role in the coral holobiont.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...