Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Aquat Toxicol ; 273: 107009, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909584

RESUMEN

Microplastics (MPs) are a heterogeneous class of pollutants fouling aquatic environments and they are hazardous to aquatic organisms. This study investigated the size-dependent effects of polystyrene microspheres (PSMPs) on the swimming ability, metabolism, and oxidative stress of juvenile grass carp (Ctenopharyngodon idella). Test fish were exposed to four sizes of PSMPs (0.07, 0.5, 5, and 20-µm), and swimming ability was tested after different exposure times (2, 7, and 15 days). To measure the effect on swimming ability, critical swimming speed (Ucrit) was determined, and to assess metabolic effects, oxygen consumption (MO2), routine metabolic rate (RMR), maximum oxygen consumption (MMR), and excess post-exercise oxygen consumption (EPOC) were determined. To assess the effects on oxidative stress, the activities of two antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) were determined in the liver and gills of test fish. After exposure to 20 µm PSMPs, there was a significant drop in Ucrit compared to the control group (P<0.05), with decreases of 22 % on Day 2 and Day 7, and 21 % on Day 15. The RMR and MMR increased significantly (P<0.05), the RMR by 23.9 % on Day 2 and the MMR by 17.2 % on Day 2 and on Day 15, 44.7 % and 20.0 % respectively. The EPOC decreased with exposure time, by 31 % (0.07-µm), 45 %-(0.5-µm), 49 % (5-µm), and 57 % (20-µm) after 15 days. Exposure to the larger PSMPs increased CAT and SOD activity more than the smaller PSMPs and the increases began with SOD activity in the gills. The larger PSMPs were consistently more harmful to juvenile grass carp than the smaller PSMPs. Our results clearly show that PSMPs have detrimental effects on juvenile grass carp and provide additional scientific evidence that environmental monitoring and regulation of microplastic pollution is necessary.


Asunto(s)
Carpas , Microesferas , Poliestirenos , Natación , Contaminantes Químicos del Agua , Animales , Carpas/fisiología , Carpas/metabolismo , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Microplásticos/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Branquias/efectos de los fármacos , Branquias/metabolismo
2.
Ying Yong Sheng Tai Xue Bao ; 31(8): 2785-2792, 2020 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34494802

RESUMEN

To investigate the swimming ability of two Schizothorax species in the Yalung River and provide basic parameters for the studies on fish behavior and the design of fish passage, we exa-mined the induced velocity, critical swimming speed, and burst swimming speed in Schizothorax dolichonema and Schizothorax prenanti with incremental velocity method and the durable swimming speed in S. dolichonema with fixed velocity method. The results showed that the induced velocity of both species increased first and then plateaued with the increases of body length, with the maximum values being lower than 0.2 m·s-1. The critical swimming speed and burst swimming speed of S. dolichonema were (0.81±0.20) and (1.49±0.26) m·s-1, respectively, while the relative critical swimming speed and the relative burst swimming speed were (4.90±1.73) and (9.77±1.72) BL·s-1 (BL: body length), respectively. For S. prenanti, the critical swimming speed and burst swimming speed were (0.73±0.24) and (1.17±0.39) m·s-1, respectively, while the relative critical swimming speed was (6.88±2.82) BL·s-1, and the relative burst swimming speed was (11.75±2.77) BL·s-1. The swimming duration of S. dolichonema was negatively correlated with the flow velocity of 0.7-1.5 m·s-1, and the relationship between fatigue time (T) and flow velocity (V) was fitted into lgT=-2.52V+5.59. The relationship between expected fishway length (d) and the tolerable maximum average flow velocity (Vf max) was accordingly derived to be Vf max=-0.17lnd+1.74. Taken together, the fishway targeting S. dolichonema and S. prenanti was recommended to generate the in-channel velocity larger than 0.2 m·s-1, while the velocity at the entrance and verticle slot should be 0.73-1.67 m·s-1, and the main-flow velocity in rest pools should be 0.2-0.7 m·s-1.


Asunto(s)
Cyprinidae , Natación , Animales , China , Ríos
3.
Fish Physiol Biochem ; 43(5): 1279-1287, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28474195

RESUMEN

Chinese sturgeon (Acipenser sinensis) is a critically endangered species. A flume-type respirometer, with video, was used to conduct two consecutive stepped velocity tests at 10, 15, 20, and 25 °C. Extent of recovery was measured after the 60-min recovery period between trials, and the recovery ratio for critical swimming speed (U crit) averaged 91.88% across temperatures. Temperature (T) effects were determined by comparing U crit, oxygen consumption rate (MO 2), and tail beat frequency (TBF) for each temperature. Results from the two trials were compared to determine the effect of exercise. The U crit occurring at 15 °C in both trials was significantly higher than that at 10 and 25 °C (p < 0.05). The U crit was plotted as a function of T and curve-fitting allowed calculation of the optimal swimming temperature 3.28 BL/s at 15.96 °C (trial 1) and 2.98 BL/s at 15.85 °C (trial 2). In trial 1, MO 2 increased rapidly with U, but then declined sharply as swimming speed approached U crit. In trial 2, MO 2 increased more slowly, but continuously, to U crit. TBF was directly proportional to U and the slope (dTBF/dU) for trial 2 was significantly lower than that for trial 1. The inverse slope (tail beats per body length, TB/BL) is a measure of swimming efficiency and the significant difference in slopes implies that the exercise training provided by trial 1 led to a significant increase in swimming efficiency in trial 2.


Asunto(s)
Metabolismo Energético/fisiología , Fatiga , Peces/fisiología , Condicionamiento Físico Animal/fisiología , Natación/fisiología , Temperatura , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA