Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
2.
Artículo en Inglés | MEDLINE | ID: mdl-39257198

RESUMEN

AIMS: Non-alcoholic fatty liver disease (NAFLD) with advanced liver fibrosis is associated with cardiovascular disease (CVD). To examine if markers of vascular injury mediate the link between liver fibrosis non-invasive tests (LFNITs) and CVD events, and to compare the incremental predictive value of LFNITs over established CVD risk scores. METHODS: Consecutively recruited individuals (n=1,692) with or without clinically overt coronary artery disease (CAD) from the Athens Cardiometabolic Cohort, were analysed. Fibrosis-4 index (FIB-4), NAFLD Fibrosis score (NFS), and BARD score were evaluated for direct and indirect associations with indices of subclinical arterial injury including carotid maximal wall thickness (maxWT) and pulse wave velocity (PWV) and with a composite of major adverse cardiovascular events (MACE) that consisted of cardiac death, acute myocardial infarction, or coronary revascularization (39-month median follow-up). RESULTS: FIB-4 was the only LFNIT which consistently associated with multiple markers of vascular injury, irrespective of CAD presence and after controlling for traditional risk factors, surrogates of insulin resistance or obesity (adjusted p<0.05 for all). FIB-4 also independently associated with CAD presence (adjusted OR 6.55 (3.48-12.3), p<0.001). Increased FIB-4>2.67 was incrementally associated with increased risk for MACE (OR (95% CI) 2.00(1.12, 3.55), deltaAUC (95% CI) 0.014(0.002-0.026)). These associations were mediated by maxWT rather than PWV. Only FIB-4 (>3.25) was independently and incrementally associated with all-cause mortality (adjusted p<0.05). CONCLUSIONS: In a cardio-metabolically diverse population, the incremental associations of LFNITs with CVD outcomes were mediated by atherosclerotic burden rather than arterial stiffening. FIB-4 consistently demonstrated associations with all study endpoints. These findings provide mechanistic insights and support the clinical applicability of FIB-4 in CVD prevention.

3.
Sci Rep ; 14(1): 14944, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942831

RESUMEN

Circulating amyloid-beta 1-40 (Αb40) has pro-atherogenic properties and could serve as a biomarker in atherosclerotic cardiovascular disease (ASCVD). However, the association of Ab40 levels with morphological characteristics reflecting atherosclerotic plaque echolucency and composition is not available. Carotid atherosclerosis was assessed in consecutively recruited individuals without ASCVD (n = 342) by ultrasonography. The primary endpoint was grey scale median (GSM) of intima-media complex (IMC) and plaques, analysed using dedicated software. Vascular markers were assessed at two time-points (median follow-up 35.5 months). In n = 56 patients undergoing carotid endarterectomy, histological plaque features were analysed. Plasma Αb40 levels were measured at baseline. Ab40 was associated with lower IMC GSM and plaque GSM and higher plaque area at baseline after multivariable adjustment. Increased Ab40 levels were also longitudinally associated with decreasing or persistently low IMC and plaque GSM after multivariable adjustment (p < 0.05). In the histological analysis, Ab40 levels were associated with lower incidence of calcified plaques and plaques without high-risk features. Ab40 levels are associated with ultrasonographic and histological markers of carotid wall composition both in the non-stenotic arterial wall and in severely stenotic plaques. These findings support experimental evidence linking Ab40 with plaque vulnerability, possibly mediating its established association with major adverse cardiovascular events.


Asunto(s)
Péptidos beta-Amiloides , Biomarcadores , Arterias Carótidas , Placa Aterosclerótica , Humanos , Masculino , Femenino , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Anciano , Persona de Mediana Edad , Biomarcadores/sangre , Péptidos beta-Amiloides/metabolismo , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/patología , Ultrasonografía/métodos , Grosor Intima-Media Carotídeo , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/patología , Endarterectomía Carotidea
5.
Hypertension ; 81(6): 1218-1232, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38511317

RESUMEN

Inflammatory responses in small vessels play an important role in the development of cardiovascular diseases, including hypertension, stroke, and small vessel disease. This involves various complex molecular processes including oxidative stress, inflammasome activation, immune-mediated responses, and protein misfolding, which together contribute to microvascular damage. In addition, epigenetic factors, including DNA methylation, histone modifications, and microRNAs influence vascular inflammation and injury. These phenomena may be acquired during the aging process or due to environmental factors. Activation of proinflammatory signaling pathways and molecular events induce low-grade and chronic inflammation with consequent cardiovascular damage. Identifying mechanism-specific targets might provide opportunities in the development of novel therapeutic approaches. Monoclonal antibodies targeting inflammatory cytokines and epigenetic drugs, show promise in reducing microvascular inflammation and associated cardiovascular diseases. In this article, we provide a comprehensive discussion of the complex mechanisms underlying microvascular inflammation and offer insights into innovative therapeutic strategies that may ameliorate vascular injury in cardiovascular disease.


Asunto(s)
Inflamación , Animales , Humanos , Arterias/metabolismo , Enfermedades Cardiovasculares/metabolismo , Epigénesis Genética , Inflamación/metabolismo , Inflamación/inmunología , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , Vasculitis/metabolismo , Vasculitis/inmunología
7.
Am J Pathol ; 194(4): 562-573, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37832870

RESUMEN

Coronary reperfusion after acute ST-elevation myocardial infarction (STEMI) is standard therapy to salvage ischemic heart muscle. However, subsequent inflammatory responses within the infarct lead to further loss of viable myocardium. Transforming growth factor (TGF)-ß1 is a potent anti-inflammatory cytokine released in response to tissue injury. The aim of this study was to investigate the protective effects of TGF-ß1 after MI. In patients with STEMI, there was a significant correlation (P = 0.003) between higher circulating TGF-ß1 levels at 24 hours after MI and a reduction in infarct size after 3 months, suggesting a protective role of early increase in circulating TGF-ß1. A mouse model of cardiac ischemia reperfusion was used to demonstrate multiple benefits of exogenous TGF-ß1 delivered in the acute phase. It led to a significantly smaller infarct size (30% reduction, P = 0.025), reduced inflammatory infiltrate (28% reduction, P = 0.015), lower intracardiac expression of inflammatory cytokines IL-1ß and chemokine (C-C motif) ligand 2 (>50% reduction, P = 0.038 and 0.0004, respectively) at 24 hours, and reduced scar size at 4 weeks (21% reduction, P = 0.015) after reperfusion. Furthermore, a low-fibrogenic mimic of TGF-ß1, secreted by the helminth parasite Heligmosomoides polygyrus, had an almost identical protective effect on injured mouse hearts. Finally, genetic studies indicated that this benefit was mediated by TGF-ß signaling in the vascular endothelium.


Asunto(s)
Helmintos , Infarto del Miocardio con Elevación del ST , Animales , Humanos , Ratones , Cicatriz/metabolismo , Helmintos/metabolismo , Miocardio/patología , Infarto del Miocardio con Elevación del ST/metabolismo , Infarto del Miocardio con Elevación del ST/patología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
8.
JAMA Cardiol ; 8(10): 946-956, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37647046

RESUMEN

Importance: The Global Registry of Acute Coronary Events (GRACE) risk score, a guideline-recommended risk stratification tool for patients presenting with acute coronary syndromes (ACS), does not consider the extent of myocardial injury. Objective: To assess the incremental predictive value of a modified GRACE score incorporating high-sensitivity cardiac troponin (hs-cTn) T at presentation, a surrogate of the extent of myocardial injury. Design, Setting, and Participants: This retrospectively designed longitudinal cohort study examined 3 independent cohorts of 9803 patients with ACS enrolled from September 2009 to December 2017; 2 ACS derivation cohorts (Heidelberg ACS cohort and Newcastle STEMI cohort) and an ACS validation cohort (SPUM-ACS study). The Heidelberg ACS cohort included 2535 and the SPUM-ACS study 4288 consecutive patients presenting with a working diagnosis of ACS. The Newcastle STEMI cohort included 2980 consecutive patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. Data were analyzed from March to June 2023. Exposures: In-hospital, 30-day, and 1-year mortality risk estimates derived from an updated risk score that incorporates continuous hs-cTn T at presentation (modified GRACE). Main Outcomes and Measures: The predictive value of continuous hs-cTn T and modified GRACE risk score compared with the original GRACE risk score. Study end points were all-cause mortality during hospitalization and at 30 days and 1 year after the index event. Results: Of 9450 included patients, 7313 (77.4%) were male, and the mean (SD) age at presentation was 64.2 (12.6) years. Using continuous rather than binary hs-cTn T conferred improved discrimination and reclassification compared with the original GRACE score (in-hospital mortality: area under the receiver operating characteristic curve [AUC], 0.835 vs 0.741; continuous net reclassification improvement [NRI], 0.208; 30-day mortality: AUC, 0.828 vs 0.740; NRI, 0.312; 1-year mortality: AUC, 0.785 vs 0.778; NRI, 0.078) in the derivation cohort. These findings were confirmed in the validation cohort. In the pooled population of 9450 patients, modified GRACE risk score showed superior performance compared with the original GRACE risk score in terms of reclassification and discrimination for in-hospital mortality end point (AUC, 0.878 vs 0.780; NRI, 0.097), 30-day mortality end point (AUC, 0.858 vs 0.771; NRI, 0.08), and 1-year mortality end point (AUC, 0.813 vs 0.797; NRI, 0.056). Conclusions and Relevance: In this study, using continuous rather than binary hs-cTn T at presentation, a proxy of the extent of myocardial injury, in the GRACE risk score improved the mortality risk prediction in patients with ACS.


Asunto(s)
Síndrome Coronario Agudo , Medición de Riesgo , Infarto del Miocardio con Elevación del ST , Troponina T , Femenino , Humanos , Masculino , Persona de Mediana Edad , Síndrome Coronario Agudo/sangre , Síndrome Coronario Agudo/diagnóstico , Síndrome Coronario Agudo/mortalidad , Síndrome Coronario Agudo/terapia , Estudios Longitudinales , Sistema de Registros , Estudios Retrospectivos , Factores de Riesgo , Infarto del Miocardio con Elevación del ST/sangre , Infarto del Miocardio con Elevación del ST/diagnóstico , Troponina T/sangre , Anciano
9.
Front Immunol ; 14: 1177467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426649

RESUMEN

Background and aims: Preclinical data suggest that activation of the adaptive immune system is critical for myocardial repair processes in acute myocardial infarction. The aim of the present study was to determine the clinical value of baseline effector T cell chemokine IP-10 blood levels in the acute phase of ST-segment elevation myocardial infarction (STEMI) for the prediction of the left ventricular function changes and cardiovascular outcomes after STEMI. Methods: Serum IP-10 levels were retrospectively quantified in two independent cohorts of STEMI patients undergoing primary percutaneous coronary intervention. Results: We report a biphasic response of the effector T cell trafficking chemokine IP-10 characterized by an initial increase of its serum levels in the acute phase of STEMI followed by a rapid reduction at 90min post reperfusion. Patients at the highest IP-10 tertile presented also with more CD4 effector memory T cells (CD4 TEM cells), but not other T cell subtypes, in blood. In the Newcastle cohort (n=47), patients in the highest IP-10 tertile or CD4 TEM cells at admission exhibited an improved cardiac systolic function 12 weeks after STEMI compared to patients in the lowest IP-10 tertile. In the Heidelberg cohort (n=331), STEMI patients were followed for a median of 540 days for major adverse cardiovascular events (MACE). Patients presenting with higher serum IP-10 levels at admission had a lower risk for MACE after adjustment for traditional risk factors, CRP and high-sensitivity troponin-T levels (highest vs. rest quarters: HR [95% CI]=0.420 [0.218-0.808]). Conclusion: Increased serum levels of IP-10 in the acute phase of STEMI predict a better recovery in cardiac systolic function and less adverse events in patients after STEMI.


Asunto(s)
Infarto del Miocardio , Infarto del Miocardio con Elevación del ST , Humanos , Quimiocina CXCL10 , Corazón , Estudios Retrospectivos , Infarto del Miocardio con Elevación del ST/terapia
10.
NPJ Aging ; 9(1): 15, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316516

RESUMEN

Myocardial infarction is a leading cause of morbidity and mortality. While reperfusion is now standard therapy, pathological remodelling leading to heart failure remains a clinical problem. Cellular senescence has been shown to contribute to disease pathophysiology and treatment with the senolytic navitoclax attenuates inflammation, reduces adverse myocardial remodelling and results in improved functional recovery. However, it remains unclear which senescent cell populations contribute to these processes. To identify whether senescent cardiomyocytes contribute to disease pathophysiology post-myocardial infarction, we established a transgenic model in which p16 (CDKN2A) expression was specifically knocked-out in the cardiomyocyte population. Following myocardial infarction, mice lacking cardiomyocyte p16 expression demonstrated no difference in cardiomyocyte hypertrophy but exhibited improved cardiac function and significantly reduced scar size in comparison to control animals. This data demonstrates that senescent cardiomyocytes participate in pathological myocardial remodelling. Importantly, inhibition of cardiomyocyte senescence led to reduced senescence-associated inflammation and decreased senescence-associated markers within other myocardial lineages, consistent with the hypothesis that cardiomyocytes promote pathological remodelling by spreading senescence to other cell-types. Collectively this study presents the demonstration that senescent cardiomyocytes are major contributors to myocardial remodelling and dysfunction following a myocardial infarction. Therefore, to maximise the potential for clinical translation, it is important to further understand the mechanisms underlying cardiomyocyte senescence and how to optimise senolytic strategies to target this cell lineage.

12.
J Hypertens ; 41(10): 1521-1543, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37382158

RESUMEN

Microcirculation is pervasive and orchestrates a profound regulatory cross-talk with the surrounding tissue and organs. Similarly, it is one of the earliest biological systems targeted by environmental stressors and consequently involved in the development and progression of ageing and age-related disease. Microvascular dysfunction, if not targeted, leads to a steady derangement of the phenotype, which cumulates comorbidities and eventually results in a nonrescuable, very high-cardiovascular risk. Along the broad spectrum of pathologies, both shared and distinct molecular pathways and pathophysiological alteration are involved in the disruption of microvascular homeostasis, all pointing to microvascular inflammation as the putative primary culprit. This position paper explores the presence and the detrimental contribution of microvascular inflammation across the whole spectrum of chronic age-related diseases, which characterise the 21st-century healthcare landscape. The manuscript aims to strongly affirm the centrality of microvascular inflammation by recapitulating the current evidence and providing a clear synoptic view of the whole cardiometabolic derangement. Indeed, there is an urgent need for further mechanistic exploration to identify clear, very early or disease-specific molecular targets to provide an effective therapeutic strategy against the otherwise unstoppable rising prevalence of age-related diseases.


Asunto(s)
Arterias , Inflamación , Humanos , Enfermedad Crónica , Microcirculación
13.
Res Sq ; 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37090497

RESUMEN

Myocardial infarction is a leading cause of morbidity and mortality. While reperfusion is now standard therapy, pathological remodeling leading to heart failure remains a clinical problem. Cellular senescence has been shown to contribute to disease pathophysiology and treatment with the senolytic navitoclax attenuates inflammation, reduces adverse myocardial remodeling and results in improved functional recovery. However, it remains unclear which senescent cell populations contribute to these processes. To identify whether senescent cardiomyocytes contribute to disease pathophysiology post-myocardial infarction, we established a transgenic model in which p16 (CDKN2A) expression was specifically knocked-out in the cardiomyocyte population. Following myocardial infarction, mice lacking cardiomyocyte p16 expression demonstrated no difference in cardiomyocyte hypertrophy but exhibited improved cardiac function and significantly reduced scar size in comparison to control animals. This data demonstrates that senescent cardiomyocytes participate in pathological myocardial remodeling. Importantly, inhibition of cardiomyocyte senescence led to reduced senescence-associated inflammation and decreased senescence-associated markers within other myocardial lineages, consistent with the hypothesis that cardiomyocytes promote pathological remodeling by spreading senescence to other cell-types. Collectively this study presents a novel demonstration that senescent cardiomyocytes are major contributors to myocardial remodeling and dysfunction following a myocardial infarction. Therefore, to maximize the potential for clinical translation, it is important to further understand the mechanisms underlying cardiomyocyte senescence and how to optimize senolytic strategies to target this cell lineage.

14.
Subcell Biochem ; 103: 45-78, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37120464

RESUMEN

During ageing molecular damage leads to the accumulation of several hallmarks of ageing including mitochondrial dysfunction, cellular senescence, genetic instability and chronic inflammation, which contribute to the development and progression of ageing-associated diseases including cardiovascular disease. Consequently, understanding how these hallmarks of biological ageing interact with the cardiovascular system and each other is fundamental to the pursuit of improving cardiovascular health globally. This review provides an overview of our current understanding of how candidate hallmarks contribute to cardiovascular diseases such as atherosclerosis, coronary artery disease and subsequent myocardial infarction, and age-related heart failure. Further, we consider the evidence that, even in the absence of chronological age, acute cellular stress leading to accelerated biological ageing expedites cardiovascular dysfunction and impacts on cardiovascular health. Finally, we consider the opportunities that modulating hallmarks of ageing offer for the development of novel cardiovascular therapeutics.


Asunto(s)
Enfermedades Cardiovasculares , Cardiopatías , Telomerasa , Humanos , Enfermedades Cardiovasculares/genética , Telomerasa/genética , Envejecimiento/genética , Senescencia Celular , Mitocondrias/genética
15.
Immunity ; 56(5): 979-997.e11, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37100060

RESUMEN

Immune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues. ADAR2 was required in the endothelium for the expression of the IL-6 receptor subunit, IL-6 signal transducer (IL6ST; gp130), and subsequently, for IL-6 trans-signaling responses. ADAR2-induced adenosine-to-inosine RNA editing suppressed the Drosha-dependent primary microRNA processing, thereby overwriting the default endothelial transcriptional program to safeguard gp130 expression. This work demonstrates a role for ADAR2 epitranscriptional activity as a checkpoint in IL-6 trans-signaling and immune cell trafficking to sites of tissue injury.


Asunto(s)
Interleucina-6 , ARN , Células Endoteliales/metabolismo , Receptor gp130 de Citocinas , Endotelio/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo
16.
Front Immunol ; 14: 1144229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081895

RESUMEN

Sepsis is a life-threatening clinical syndrome characterized by multiorgan dysfunction caused by a dysregulated or over-reactive host response to infection. During sepsis, the coagulation cascade is triggered by activated cells of the innate immune system, such as neutrophils and monocytes, resulting in clot formation mainly in the microcirculation, a process known as immunothrombosis. Although this process aims to protect the host through inhibition of the pathogen's dissemination and survival, endothelial dysfunction and microthrombotic complications can rapidly lead to multiple organ dysfunction. The development of treatments targeting endothelial innate immune responses and immunothrombosis could be of great significance for reducing morbidity and mortality in patients with sepsis. Medications modifying cell-specific immune responses or inhibiting platelet-endothelial interaction or platelet activation have been proposed. Herein, we discuss the underlying mechanisms of organ-specific endothelial dysfunction and immunothrombosis in sepsis and its complications, while highlighting the recent advances in the development of new therapeutic approaches aiming at improving the short- or long-term prognosis in sepsis.


Asunto(s)
Sepsis , Trombosis , Enfermedades Vasculares , Humanos , Tromboinflamación , Neutrófilos
17.
Atherosclerosis ; 374: 55-73, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36759270

RESUMEN

Atherosclerotic cardiovascular disease (ASCVD) remains the major cause of premature death and disability worldwide, even when patients with an established manifestation of atherosclerotic heart disease are optimally treated according to the clinical guidelines. Apart from the epigenetic control of transcription of the genetic information to messenger RNAs (mRNAs), gene expression is tightly controlled at the post-transcriptional level before the initiation of translation. Although mRNAs are traditionally perceived as the messenger molecules that bring genetic information from the nuclear DNA to the cytoplasmic ribosomes for protein synthesis, emerging evidence suggests that processes controlling RNA metabolism, driven by RNA-binding proteins (RBPs), affect cellular function in health and disease. Over the recent years, vascular endothelial cell, smooth muscle cell and immune cell RBPs have emerged as key co- or post-transcriptional regulators of several genes related to vascular inflammation and atherosclerosis. In this review, we provide an overview of cell-specific function of RNA-binding proteins involved in all stages of ASCVD and how this knowledge may be used for the development of novel precision medicine therapeutics.


Asunto(s)
Aterosclerosis , Humanos , Aterosclerosis/genética , Aterosclerosis/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Inflamación/genética
18.
J Am Coll Cardiol ; 80(10): 998-1010, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36049808

RESUMEN

BACKGROUND: Patients with non-ST-segment elevation acute coronary syndromes (NSTE-ACS) are at high residual risk for long-term cardiovascular (CV) mortality. Cathepsin S (CTSS) is a lysosomal cysteine protease with elastolytic and collagenolytic activity that has been involved in atherosclerotic plaque rupture. OBJECTIVES: The purpose of this study was to determine the following: 1) the prognostic value of circulating CTSS measured at patient admission for long-term mortality in NSTE-ACS; and 2) its additive value over the GRACE (Global Registry of Acute Coronary Events) risk score. METHODS: This was a single-center cohort study, consecutively recruiting patients with adjudicated NSTE-ACS (n = 1,112) from the emergency department of an academic hospital. CTSS was measured in serum using enzyme-linked immunosorbent assay. All-cause mortality at 8 years was the primary endpoint. CV death was the secondary endpoint. RESULTS: In total, 367 (33.0%) deaths were recorded. CTSS was associated with increased risk of all-cause mortality (HR for highest vs lowest quarter of CTSS: 1.89; 95% CI: 1.34-2.66; P < 0.001) and CV death (HR: 2.58; 95% CI: 1.15-5.77; P = 0.021) after adjusting for traditional CV risk factors, high-sensitivity C-reactive protein, left ventricular ejection fraction, high-sensitivity troponin-T, revascularization and index diagnosis (unstable angina/ non-ST-segment elevation myocardial infarction). When CTSS was added to the GRACE score, it conferred significant discrimination and reclassification value for all-cause mortality (Delta Harrell's C: 0.03; 95% CI: 0.012-0.047; P = 0.001; and net reclassification improvement = 0.202; P = 0.003) and CV death (AUC: 0.056; 95% CI: 0.017-0.095; P = 0.005; and net reclassification improvement = 0.390; P = 0.001) even after additionally considering high-sensitivity troponin-T and left ventricular ejection fraction. CONCLUSIONS: Circulating CTSS is a predictor of long-term mortality and improves risk stratification of patients with NSTE-ACS over the GRACE score.


Asunto(s)
Síndrome Coronario Agudo , Catepsinas , Infarto del Miocardio sin Elevación del ST , Síndrome Coronario Agudo/diagnóstico , Catepsinas/sangre , Estudios de Cohortes , Humanos , Infarto del Miocardio sin Elevación del ST/diagnóstico , Pronóstico , Medición de Riesgo , Volumen Sistólico , Troponina T , Función Ventricular Izquierda
19.
Thromb Haemost ; 122(11): 1932-1942, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35915966

RESUMEN

BACKGROUND: The noncoding antisense transcript for ß-secretase-1 (BACE1-AS) is a long noncoding RNA with a pivotal role in the regulation of amyloid-ß (Aß). We aimed to explore the clinical value of BACE1-AS expression in atherosclerotic cardiovascular disease (ASCVD). METHODS: Expression of BACE1-AS and its target, ß-secretase 1 (BACE1) mRNA, was measured in peripheral blood mononuclear cells derived from 434 individuals (259 without established ASCVD [non-CVD], 90 with stable coronary artery disease [CAD], and 85 with acute coronary syndrome). Intima-media thickness and atheromatous plaques evaluated by ultrasonography, as well as arterial wave reflections and pulse wave velocity, were measured as markers of subclinical ASCVD. Patients were followed for a median of 52 months for major adverse cardiovascular events (MACE). RESULTS: In the cross-sectional arm, BACE1-AS expression correlated with BACE1 expression (r = 0.396, p < 0.001) and marginally with Aß1-40 levels in plasma (r = 0.141, p = 0.008). Higher BACE1-AS was associated with higher estimated CVD risk assessed by HeartScore for non-CVD subjects and by European Society of Cardiology clinical criteria for the total population (p < 0.05 for both). BACE1-AS was associated with higher prevalence of CAD (odds ratio [OR] = 1.85, 95% confidence interval [CI]: 1.37-2.5), multivessel CAD (OR = 1.36, 95% CI: 1.06-1.75), and with higher number of diseased vascular beds (OR = 1.31, 95% CI: 1.07-1.61, for multiple diseased vascular beds) after multivariable adjustment for traditional cardiovascular risk factors. In the prospective arm, BACE1-AS was an independent predictor of MACE in high cardiovascular risk patients (adjusted hazard ratio = 1.86 per ascending tertile, 95% CI: 1.011-3.43, p = 0.046). CONCLUSION: BACE1-AS is associated with the incidence and severity of ASCVD.


Asunto(s)
Envejecimiento , Aterosclerosis , Enfermedades Cardiovasculares , ARN Largo no Codificante , Humanos , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Aterosclerosis/genética , Enfermedades Cardiovasculares/genética , Grosor Intima-Media Carotídeo , Estudios Transversales , Leucocitos Mononucleares/metabolismo , Estudios Prospectivos , Análisis de la Onda del Pulso , ARN sin Sentido , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA