Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37512959

RESUMEN

This literature review aimed to collect investigations on the in vivo evidence for bacteria associated with fermented dairy foods to behave as probiotics with beneficial effects in the prevention and treatment of various diseases. All main bacterial groups commonly present in high numbers in fermented milks or cheeses were taken into account, namely starter lactic acid bacteria (SLAB) Lactobacillus delbrueckii subsp. bulgaricus and lactis, L. helveticus, Lactococcus lactis, Streptococcus thermophilus, non-starter LAB (NSLAB) Lacticaseibacillus spp., Lactiplantibacillus plantarum, dairy propionibacteria, and other less frequently encountered species. Only studies regarding strains of proven dairy origin were considered. Studies in animal models and clinical studies showed that dairy bacteria ameliorate symptoms of inflammatory bowel disease (IBD), mucositis, metabolic syndrome, aging and oxidative stress, cancer, bone diseases, atopic dermatitis, allergies, infections and damage caused by pollutants, mild stress, and depression. Immunomodulation and changes in the intestinal microbiota were the mechanisms most often involved in the observed effects. The results of the studies considered indicated that milk and dairy products are a rich source of beneficial bacteria that should be further exploited to the advantage of human and animal health.

2.
Microorganisms ; 11(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37317280

RESUMEN

Traditional dry fermented meat products are obtained artisanally in many countries, where they represent a gastronomic heritage well distinguished from industrial counterparts. This food category is most often obtained from red meat, a food commodity that is under attack because of evidence of increased risk of cancer and degenerative diseases with high consumption. However, traditional fermented meat products are intended for moderate consumption and gastronomic experience, and, as such, their production must be continued, which would also help safeguard the culture and economy of the geographical areas of origin. In this review, the main risks attributed to these products are considered, and how these risks are reduced by the application of autochthonous microbial cultures is highlighted by reviewing studies reporting the effects of autochthonous lactic acid bacteria (LAB), coagulase negative staphylococci (CNS), Debaryomyces hansenii and Penicillium nalgiovense on microbiological and chemical safety and on sensory attributes. The role of dry fermented sausages as a source of microorganisms that can be beneficial to the host is also considered. From the results of the studies reviewed here it appears that the development of autochthonous cultures for these foods can ensure safety and stabilize sensory characteristics and has the capacity to be extended to a larger variety of traditional products.

3.
Antibiotics (Basel) ; 12(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36978297

RESUMEN

This study aimed to investigate the recent trends of antibiotic resistance (AR) prevalence in Staphylococcus aureus isolated from the milk of animals with clinical mastitis in areas of the Abruzzo and Molise regions in Central Italy. Fifty-four S. aureus isolates were obtained from routine testing for clinical mastitis agents carried out in the author institution in the years 2021 and 2022 and were analyzed for phenotypic resistance to eight antibiotics recommended for testing by European norms and belonging to the antibiotic classes used for mastitis treatment in milk-producing animals. Moreover, the presence of 14 transferable genetic determinants encoding resistance to the same antibiotics was analyzed using qPCR tests developed in this study. Phenotypic resistance to non-ß-lactams was infrequent, with only one 2022 isolate resistant to clindamycin. However, resistance to the ß-lactam cefoxitin at concentrations just above the threshold of 4 µg/mL was observed in 59.2% of isolates in both years, making these isolates classifiable as methicillin-resistant. The AR genotypes detected were the blaZ gene (50% of 2021 isolates and 44.4% of 2022 isolates), aphA3-blaZ- ermC/T (one 2021 isolate), aphA3-ant6-blaZ-ermC/T (one 2021 isolate), blaZ-ermB (one 2022 isolate) and mecA-mph (one 2022 isolate). An inquiry into the veterinarians who provided the samples, regarding the antimicrobials prescribed for mastitis treatment and criteria of usage, indicated a possible causal relation with the AR test results. The occurrence of AR genotypes did not increase in time, most probably reflecting how mastitis was treated and prevented in farms. However, the frequently observed cefoxitin resistance needs to be explained genotypically, further monitored and limited by modifying antibiotic usage practices. The identification of a mecA-positive isolate in 2022 suggests further investigation if this genotype is emerging locally.

4.
Microorganisms ; 10(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35208655

RESUMEN

Human salmonellosis incidence is increasing in the European Union (EU). Salmonellaenterica subsp. enterica serovar Enteriditis, Salmonellaenterica subsp. enterica serovar Typhimurium (including its monophasic variant) and Salmonellaenterica subsp. enterica serovar Infantis represent targets in control programs due to their frequent association with human cases. This study aimed to detect the most prevalent serotypes circulating in Abruzzo and Molise Regions between 2015 and 2020 in the framework of the Italian National Control Program for Salmonellosis in Poultry (PNCS)]. A total of 332 flocks of Abruzzo and Molise Regions were sampled by veterinary services in the period considered, and 2791 samples were taken. Samples were represented by faeces and dust from different categories of poultry flocks: laying hens (n = 284), broilers (n = 998), breeding chickens (n = 1353) and breeding or fattening turkeys (n = 156). Breeding and fattening turkeys had the highest rate of samples positive for Salmonella spp. (52.6%; C.I. 44.8%-60.3%). Faeces recovered through boot socks represented the greatest number of positive samples (18.2%). Salmonellaenterica subsp. enterica serovar Infantis was the prevalent serotype in breeding and fattening turkeys (32.7%; C.I. 25.8%-40.4%) and in broiler flocks (16.5%; C.I. 14.4%-19.0%). Salmonellaenterica subsp. enterica serovar Typhimurium was detected at low levels in laying hens (0.7%; C.I. 0.2%-2.5%) followed by breeding and fattening turkeys (0.6%; C.I. 0.2%-2.5%). Salmonellaenterica subsp. enterica serovar Enteriditis was also detected at low levels in laying hens (2.5%; C.I. 1.2%-5.0%). These findings highlight the role of broilers and breeding/fattening turkeys as reservoirs of Salmonella spp. and, as a consequence, in the diffusion of dangerous serotypes as Salmonellaenterica subsp. enterica serovar Infantis. This information could help veterinary services to analyze local trends and to take decisions not only based on indications from national control programs, but also based on real situations at farms in their own competence areas.

5.
Int J Food Microbiol ; 347: 109175, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-33812165

RESUMEN

Pecorino is a typical Italian cheese, mostly produced in central and southern Italy regions using ewe raw milk and following traditional procedures. The use of raw milk constitutes a risk linked to the potential survival or multiplication of pathogenic microorganisms, as Shiga toxin-producing Escherichia coli (STEC). The aim of this study was to compare different Italian traditional Pecorino production methods to determine if there were any phases that could influence the Escherichia coli O157 survival rate, but also if they could negatively influence lactic acid bacteria survival rate, during the phases of production and ripening. Therefore batches of Pecorino cheese were prepared using different production methods, representing the real and typical cheese production in southern and central Italy regions: 1) heating the milk at 37 °C for about 40 min before curding, 2) heating the milk at 60 °C (thermization) for 13 min, so that the alkaline phosphatase reaction is still positive before curding, 3) cooking curd at 41 °C and 4) at 45 °C, both for 5 min. Our results demonstrated that traditional milk treatments different from pasteurization can help but do not eliminate serious microbiological treats, as E. coli O157, especially if the raw milk is heavily contaminated. The heat treatment at 60 °C applied to raw milk was able to decrease the concentration of E. coli O157 of 1.7 log10CFU/ml and, according to the inactivation slope, it would be further reduced prolonging the heating treatment. The results obtained also showed that, during the Pecorino cheese ripening, E. coli O157 was always enumerable for 60 days, remaining detectable after 90 days of ripening.


Asunto(s)
Queso/microbiología , Escherichia coli O157/fisiología , Manipulación de Alimentos/métodos , Leche/microbiología , Animales , Recuento de Colonia Microbiana , Escherichia coli O157/aislamiento & purificación , Microbiología de Alimentos , Italia , Lactobacillales/aislamiento & purificación , Lactobacillales/fisiología , Viabilidad Microbiana , Ovinos , Temperatura
6.
Int J Food Microbiol ; 329: 108690, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32497790

RESUMEN

Pecorino di Farindola is a typical cheese produced in the area surrounding the village of Farindola, located in the Abruzzo Region (central Italy), unique among Italian cheese because only raw ewe milk and pig rennet are used for its production. In the literature it is well documented that raw milk is able to support the growth of pathogenic microorganisms such as Listeria monocytogenes. Predictive microbiology can be useful in order to predict growth-death kinetics of pathogenic bacteria, on the basis of known environmental conditions. Aim of this study was to compare predictions obtained from a model, originally designed to predict the kinetics of L. monocytogenes in the dynamic growth-death environment of drying fresh sausage, with the results of challenge tests performed during the ripening of Pecorino di Farindola produced from artificially contaminated raw ewe milk. A challenge test was carried out using ewe raw milk inoculated with L. monocytogenes, in order to produce Pecorino di Farindola cheese stored at 18 °C for 149 days of ripening. During the ripening period, pH and aw values decreased in all samples analysed; lactic acid bacteria become the prevailing microbial population, while for L. monocytogenes a period of stability (neither growth nor death) followed the initial situation. The growth inhibition and the following inactivation may mostly be due to competition with the autochthonous microbiota and to the reduction of water activity. Mathematical modelling was used in order to predict microbial kinetics in the dynamic ripening environment, joining growth and death patterns in a continuous way, and including the highly uncertain growth/no growth range separating the two regions. The effect of lactic acid bacteria on the growth of pathogens was also included. Predicted microbial kinetics were satisfactory, as confirmed by the absence of statistically significant difference between observed and predicted values (p > 0.05). The present study proved, via challenge tests, that a dynamic growth/death model, previously used for a meat product, can be fruitfully used in cheese characterized by active competitive microbiota and progressive drying during ripening.


Asunto(s)
Queso/microbiología , Microbiología de Alimentos , Listeria monocytogenes/crecimiento & desarrollo , Modelos Biológicos , Animales , Italia , Cinética , Lactobacillales , Leche/microbiología , Alimentos Crudos/microbiología
7.
Food Sci Nutr ; 7(12): 3845-3852, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31890162

RESUMEN

Shelf-life studies in ready-to-eat (RTE) modified atmosphere packaged (MAP) precut iceberg lettuce (minimally processed) were carried out in order to evaluate the natural microflora of the product and survival or multiplication of Listeria monocytogenes (L. monocytogenes), taking into consideration the impact of the production steps resulting in a reduction of the shelf life of the fresh-cut produce, due to the accelerated enzymatic activity, moisture loss, and microbial proliferation. The research first aimed to evaluate the characteristics of the natural microflora of the product, and then, L. monocytogenes dynamics were studied via challenge tests. L. monocytogenes concentration was studied at 8 and 12°C storage temperature for 10 days, 6 days longer than their shelf life. The number of L. monocytogenes in samples stored both at 8°C and 12°C increased gradually, more evidently in samples stored at 12°C. L. monocytogenes dynamics were studied to define maximum growth rate (µmax) at 8°C (0.0104 log10CFU/g/h) and 12°C (0.0183 log10CFU/g/h). Data obtained from the study were used to develop and validate a specific predictive model able to predict the behavior of L. monocytogenes in RTE MAP iceberg lettuce. According to the model, an increase in storage temperature of 6°C (e.g., from 8 to 14°C) would lead to an increase in L. monocytogenes concentration of more than 6 log10CFU/g at the 10th day of the challenge test (12th days of shelf life). Storage at 4°C allowed to increase L. monocytogenes enumeration from 3.30 log10CFU/g at D0 to 3.60 log10CFU/g at D10. The model could be applied to microorganisms other than L. monocytogenes, modifying the coefficients of the polynomial equation on which it is based.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...