Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Stud Health Technol Inform ; 296: 73-80, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36073491

RESUMEN

Next-generation sequencing methods continuously provide clinicians and researchers in precision oncology with growing numbers of genomic variants found in cancer. However, manually interpreting the list of variants to identify reliable targets is an inefficient and cumbersome process that does not scale with the increasing number of cases. Support by computer systems is needed for the analysis of large scale experiments and clinical studies to identify new targets and therapies, and user-friendly applications are needed in molecular tumor boards to support clinicians in their decision-making processes. The MTB-Report tool annotates, filters and sorts genetic variants with information from public databases, providing evidence on actionable variants in both scenarios. A web interface supports medical doctors in the tumor board, and a command line mode allows batch processing of large datasets. The MTB-Report tool is available as an R implementation as well as a Docker image to provide a tool that runs out-of-the-box. Moreover, containerization ensures a stable application that delivers reproducible results over time. A public version of the web interface is available at: http://mtb.bioinf.med.uni-goettingen.de/mtb-report.


Asunto(s)
Neoplasias , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Oncología Médica , Neoplasias/genética , Medicina de Precisión
2.
Stud Health Technol Inform ; 283: 209-216, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34545838

RESUMEN

Precision oncology utilizing molecular biomarkers for targeted therapies is one of the hopes to treat cancer. The availability of patient specific molecular profiling through next-generation sequencing, though, increases the amount of available data per patient to an extent that computational support is required to identify potential driver alterations for targeted therapies and rational decision-making in molecular tumor boards (MTBs). For some genetic variants evidence-based drug recommendations are available in public databases, but for the majority, the variants of unknown significance (VUS), this clinical information is missing. Additionally, for most of these variants no information about the functional impact on the protein is accessible. To acquire maximal functional evidence for VUS, the VUS-Predict pipeline collects estimations about the effect of a VUS by integrating multiple pre-existing tools. Pre-existing tools implement different approaches for their predictions, which are summarized by our newly developed tool with a common score and classification in neutral or deleterious variants. The primary tools are chosen based on their sensitivity and specificity on well-known variants of the transcription factor TP53. Resulting negative and positive predictive values are used to calibrate the VUS-Predict pipeline. Further, the pipeline is evaluated using data from public cancer databases and cases of the MTB in Göttingen, both also in comparison with the ensemble method REVEL. The results show that VUS-Predict has clear advantages in a clinical setting due to clear and traceable predictions. In particular, VUS outperforms REVEL in the real-life setting of a MTB. Likewise, an evaluation on variants of public cancer databases confirms the good results of VUS-Predict and shows the need for a reliable gold standard and unambiguous results of the tools under test.


Asunto(s)
Neoplasias , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Medicina de Precisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...