Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 75(4): 1091-1098, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30255667

RESUMEN

BACKGROUND: Next-generation sequencing can enable genetic surveys of large numbers of individuals. We developed a genotyping-by-sequencing assay for detecting strong phosphine resistance alleles in the dihydrolipoamide dehydrogenase (dld) gene of Rhyzopertha dominica populations. The assay can estimate the distribution and frequency of resistance variants in thousands of individual insects in a single run. RESULTS: We analysed 1435 individual insects collected over a 1-year period from 59 grain-storage sites including farms (n = 29) and central storages (n = 30) across eastern Australia. Resistance alleles were detected in 49% of samples, 38% of farms and 60% of central storages. Although multiple alleles were detected, only two resistance variants (P49S and K142E) were widespread and each appeared to have a distinct but overlapping geographical distribution. CONCLUSION: The type of structure in which the grain is stored had a strong effect on resistance allele frequency. We observed higher frequencies of resistance alleles in bunker storages at central sites compared with other storage types. This contributed to the higher frequencies of resistance alleles in bulk-handling facilities relative to farms. The discovery of a storage structure that predisposes insects to resistance highlights the utility of our high-throughput assay system for improvement of phosphine resistance management practices. © 2018 Society of Chemical Industry.


Asunto(s)
Escarabajos/genética , Dihidrolipoamida Deshidrogenasa/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Fosfinas/farmacología , Animales , Escarabajos/efectos de los fármacos , Escarabajos/enzimología , Dihidrolipoamida Deshidrogenasa/metabolismo , Control de Insectos , Proteínas de Insectos/metabolismo , Nueva Gales del Sur , Queensland
2.
Genetics ; 209(1): 281-290, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29496747

RESUMEN

Next-generation sequencing methods enable identification of the genetic basis of traits in species that have no prior genomic information available. The combination of next-generation sequencing, variant analysis, and linkage is a powerful way of identifying candidate genes for a trait of interest. Here, we used a comparative transcriptomics [RNA sequencing (RNAseq)] and genetic linkage analysis approach to identify the rph1 gene. rph1 variants are responsible for resistance to the fumigant phosphine (PH3) that is used to control insect pests of stored grain. In each of the four major species of pest insect of grain we have investigated, there are two major resistance genes, rph1 and rph2, which interact synergistically to produce strongly phosphine-resistant insects. Using RNAseq and genetic linkage analyses, we identified candidate resistance (rph1) genes in phosphine-resistant strains of three species: Rhyzopertha dominica (129 candidates), Sitophilus oryzae (206 candidates), and Cryptolestes ferrugineus (645 candidates). We then compared these candidate genes to 17 candidate resistance genes previously mapped in Tribolium castaneum and found only one orthologous gene, a cytochrome b5 fatty acid desaturase (Cyt-b5-r), to be associated with the rph1 locus in all four species. This gene had either missense amino acid substitutions and/or insertion/deletions/frameshift variants in each of 18 phosphine-resistant strains that were not observed in the susceptible strains of the four species. We propose a model of phosphine action and resistance in which phosphine induces lipid peroxidation through reactive oxygen species generated by dihydrolipoamide dehydrogenase, whereas disruption of Cyt-b5-r in resistant insects decreases the polyunsaturated fatty acid content of membranes, thereby limiting the potential for lipid peroxidation.


Asunto(s)
Ligamiento Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Insectos/efectos de los fármacos , Insectos/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Fosfinas/farmacología , Transcriptoma , Animales , Perfilación de la Expresión Génica , Genes de Insecto , Fenotipo , Polimorfismo de Nucleótido Simple
3.
Science ; 338(6108): 807-10, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23139334

RESUMEN

Phosphine is a small redox-active gas that is used to protect global grain reserves, which are threatened by the emergence of phosphine resistance in pest insects. We find that polymorphisms responsible for genetic resistance cluster around the redox-active catalytic disulfide or the dimerization interface of dihydrolipoamide dehydrogenase (DLD) in insects (Rhyzopertha dominica and Tribolium castaneum) and nematodes (Caenorhabditis elegans). DLD is a core metabolic enzyme representing a new class of resistance factor for a redox-active metabolic toxin. It participates in four key steps of core metabolism, and metabolite profiles indicate that phosphine exposure in mutant and wild-type animals affects these steps differently. Mutation of DLD in C. elegans increases arsenite sensitivity. This specific vulnerability may be exploited to control phosphine-resistant insects and safeguard food security.


Asunto(s)
Caenorhabditis elegans/enzimología , Escarabajos/enzimología , Dihidrolipoamida Deshidrogenasa/genética , Resistencia a los Insecticidas/genética , Insecticidas , Fosfinas , Tribolium/enzimología , Animales , Arsenicales/farmacología , Arsenitos/farmacología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dominio Catalítico , Escarabajos/efectos de los fármacos , Escarabajos/genética , Escarabajos/metabolismo , Dihidrolipoamida Deshidrogenasa/química , Dihidrolipoamida Deshidrogenasa/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insecticidas/farmacología , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Mutación , Oxidación-Reducción , Plaguicidas , Fosfinas/farmacología , Polimorfismo Genético , Multimerización de Proteína , Tribolium/efectos de los fármacos , Tribolium/genética , Tribolium/metabolismo
4.
J Toxicol ; 2011: 494168, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21776261

RESUMEN

Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH(3)), the chemistry of phosphorus is central to its toxicity. The elements above and below phosphorus in the periodic table are nitrogen (N) and arsenic (As), which also produce toxic hydrides, namely, NH(3) and AsH(3). The three hydrides cause related symptoms and similar changes to cellular and organismal physiology, including disruption of the sympathetic nervous system, suppressed energy metabolism and toxic changes to the redox state of the cell. We propose that these three effects are interdependent contributors to phosphine toxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA