Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 174(2): 1226-1237, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28385731

RESUMEN

Mitogen-activated protein kinases (MAPKs) form important signaling modules for a variety of cellular responses in eukaryotic cells. In plants, MAPKs play key roles in growth and development as well as in immunity/stress responses. Pollen-pistil interactions are critical early events regulating pollination and fertilization and involve many signaling events. Self-incompatibility (SI) is an important mechanism to prevent self-fertilization and inbreeding in higher plants and also is known to utilize signaling to achieve incompatible pollen rejection. Although several pollen-expressed MAPKs exist, very little is known about their function. We previously identified a pollen-expressed MAPK (p56) from Papaver rhoeas that was rapidly activated during SI; several studies implicated its role in signaling to SI-induced programmed cell death involving a DEVDase. However, to date, the identity of the MAPK involved has been unknown. Here, we have identified and cloned a pollen-expressed P. rhoeas threonine-aspartate-tyrosine (TDY) MAPK, PrMPK9-1 Rather few data relating to the function of TDY MAPKs in plants currently exist. We provide evidence that PrMPK9-1 has a cell type-specific function, with a distinct role from AtMPK9 To our knowledge, this is the first study implicating a function for a TDY MAPK in pollen. We show that PrMPK9-1 corresponds to p56 and demonstrate that it is functionally involved in mediating SI in P. rhoeas pollen: PrMPK9-1 is a key regulator for SI in pollen and acts upstream of programmed cell death involving actin and activation of a DEVDase. Our study provides an important advance in elucidating functional roles for this class of MAPKs.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Papaver/enzimología , Papaver/fisiología , Proteínas de Plantas/metabolismo , Autoincompatibilidad en las Plantas con Flores/fisiología , Apoptosis/efectos de los fármacos , Arabidopsis/enzimología , Caspasa 3/metabolismo , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Péptido Hidrolasas/metabolismo , Fosfoproteínas/metabolismo , Tubo Polínico/efectos de los fármacos , Tubo Polínico/crecimiento & desarrollo , Transporte de Proteínas/efectos de los fármacos , Autoincompatibilidad en las Plantas con Flores/efectos de los fármacos
2.
Plant Physiol ; 173(3): 1606-1616, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28126844

RESUMEN

Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca2+ and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.


Asunto(s)
Pirofosfatasa Inorgánica/metabolismo , Papaver/enzimología , Proteínas de Plantas/metabolismo , Polen/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Calcio/metabolismo , Calcio/farmacología , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Peróxido de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Pirofosfatasa Inorgánica/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Mutación , Oxidantes/farmacología , Papaver/genética , Fosforilación , Filogenia , Proteínas de Plantas/genética , Polen/genética , Proteínas Quinasas/clasificación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Solubilidad , Especificidad por Sustrato , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA