Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(26): 28463-28475, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973891

RESUMEN

The discharge of toxic dye effluents from industry is a major concern for environmental pollution and toxicity. These toxic dyes can be efficiently removed from waste streams using a photocatalysis process involving visible light. Due to its simple synthesis procedure, inexpensive precursor, and robust stability, graphitic carbon nitride (g-C3N4, or CN) has been used as a visible light responsive catalyst for the degradation of dyes with mediocre performance because it is limited by its low visible light harvesting capability due to its wide bandgap and fast carrier recombination rate. To overcome these limitations and enhance the performance of g-C3N4, it was coupled with a narrow bandgap copper tin sulfide (CTS) semiconductor to form a p-n heterojunction. CTS and g-C3N4 were selected due to their good stability, low toxicity, ease of synthesis, layered sheet/plate-like morphology, and relatively abundant precursors. Accordingly, a series of copper tin sulfide/graphitic carbon nitride nanocomposites (CTS/g-C3N4) with varying CTS contents were successfully synthesized via a simple two-step process involving thermal pyrolysis and coprecipitation for visible-light-induced photocatalytic degradation of methyl orange (MO) dye. The photocatalytic activity results showed that the 50%(wt/wt) CTS/g-C3N4 composite displayed a remarkable degradation efficiency of 95.6% for MO dye under visible light illumination for 120 min, which is higher than that of either pristine CTS or g-C3N4. The improved performance is attributed to the extended light absorption range (due to the optimized bandgap), effective suppression of photoinduced electron-hole recombination, and improved charge transfer that arose from the formation of a p-n heterojunction, as evidenced by electrochemical impedance spectroscopy (EIS), photocurrent, and photoluminescence results. Moreover, the results of the reusability study showed that the composite has excellent stability, indicating its potential for the degradation of MO and other toxic organic dyes from waste streams.

2.
Nanomicro Lett ; 16(1): 172, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619762

RESUMEN

Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies. Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility. In particular, all-solid-state lithium-sulfur batteries (ASSLSBs) that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system, surpassing conventional lithium-ion batteries. This can be attributed predominantly to their exceptional energy density, extended operational lifespan, and heightened safety attributes. Despite these advantages, the adoption of ASSLSBs in the commercial sector has been sluggish. To expedite research and development in this particular area, this article provides a thorough review of the current state of ASSLSBs. We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs, explore the fundamental scientific principles involved, and provide a comprehensive evaluation of the main challenges faced by ASSLSBs. We suggest that future research in this field should prioritize plummeting the presence of inactive substances, adopting electrodes with optimum performance, minimizing interfacial resistance, and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.

3.
Micromachines (Basel) ; 15(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38675306

RESUMEN

Molybdenum sulfide-oxide (MoS2, MS) emerges as the prime electrocatalyst candidate demonstrating hydrogen evolution reaction (HER) activity comparable to platinum (Pt). This study presents a facile electrochemical approach for fabricating a hybrid copper (Cu)/MoS2 (CMS) nanostructure thin-film electrocatalyst directly onto nickel foam (NF) without a binder or template. The synthesized CMS nanostructures were characterized utilizing energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical methods. The XRD result revealed that the Cu metal coating on MS results in the creation of an extremely crystalline CMS nanostructure with a well-defined interface. The hybrid nanostructures demonstrated higher hydrogen production, attributed to the synergistic interplay of morphology and electron distribution at the interface. The nanostructures displayed a significantly low overpotential of -149 mV at 10 mA cm-2 and a Tafel slope of 117 mV dec-1, indicating enhanced catalytic activity compared to pristine MoS2.This research underscores the significant enhancement of the HER performance and conductivity achieved by CMS, showcasing its potential applications in renewable energy.

4.
ACS Omega ; 9(8): 9452-9462, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434813

RESUMEN

Copper tin sulfide, Cu4SnS4 (CTS), a ternary transition-metal chalcogenide with unique properties, including superior electrical conductivity, distinct crystal structure, and high theoretical capacity, is a potential candidate for supercapacitor (SC) electrode materials. However, there are few studies reporting the application of Cu4SnS4 or its composites as electrode materials for SCs. The reported performance of the Cu4SnS4 electrode is insufficient regarding cycle stability, rate capability, and specific capacity; probably resulting from poor electrical conductivity, restacking, and agglomeration of the active material during continued charge-discharge cycles. Such limitations can be overcome by incorporating graphene as a support material and employing a binder-free, facile, electrodeposition technique. This work reports the fabrication of a copper tin sulfide-reduced graphene oxide/nickel foam composite electrode (CTS-rGO/NF) through stepwise, facile electrodeposition of rGO and CTS on a NF substrate. Electrochemical evaluations confirmed the enhanced supercapacitive performance of the CTS-rGO/NF electrode compared to that of CTS/NF. A remarkably improved specific capacitance of 820.83 F g-1 was achieved for the CTS-rGO/NF composite electrode at a current density of 5 mA cm-2, which is higher than that of CTS/NF (516.67 F g-1). The CTS-rGO/NF composite electrode also exhibited a high-rate capability of 73.1% for galvanostatic charge-discharge (GCD) current densities, ranging from 5 to 12 mA cm-2, and improved cycling stability with over a 92% capacitance retention after 1000 continuous GCD cycles; demonstrating its excellent performance as an electrode material for energy storage applications, encompassing SCs. The enhanced performance of the CTS-rGO/NF electrode could be attributed to the synergetic effect of the enhanced conductivity and surface area introduced by the inclusion of rGO in the composite.

5.
ACS Omega ; 9(1): 559-572, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222549

RESUMEN

The photodegradation of organic pollutants using metal oxide-based catalysts has drawn great attention as an effective method for wastewater treatment. In this study, zinc oxide nanoparticles (ZnO NPs) and zinc oxide/copper oxide nanocomposites (ZnO/CuO NCs) were fabricated using the leaf extract of Croton macrostachyus as a nontoxic, natural reducing and stabilizing agent. The synthesized samples were characterized by employing X-ray diffraction, microscopic, spectroscopic, and electrochemical methods. The results confirmed the successful synthesis of ZnO NPs and ZnO/CuO NCs with well-defined crystalline structures and morphologies. The prepared samples were tested for the photodegradation of methylene blue (MB) dye under visible light irradiation. Compared to ZnO NPs, ZnO/CuO NCs showed greatly improved photocatalytic performances, particularly with the sample prepared with the 20 mol % Cu precursor (97.02%). The enhancement could be related to the formed p-n heterojunction, which can suppress the recombination of charge carriers and extend the photoresponsive range. A theoretical study of the photocatalytic activity of ZnO/CuO NCs against MB dye degradation was also conducted by using COMSOL Multiphysics software. The results of the simulation are in reasonable agreement with those of the experiment. This study contributes to the development of sustainable and effective photocatalytic materials that are suitable for application in environmental remediation, particularly in the treatment of wastewater.

6.
RSC Adv ; 13(49): 34358-34365, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38024966

RESUMEN

The rapid and efficient detection of chloride (Cl-) ions is crucial in a variety of fields, making the development of advanced sensing methods such as colorimetric sensors an imperative advancement in analytical chemistry. Herein, a novel, selective, and straightforward paper-based colorimetric sensing platform has been developed utilizing an amorphous photonic array (APA) of magnetoplasmonic Ag@Fe3O4 nanoparticles (MagPlas NPs) for the detection of Cl- in water. Taking advantage of the highly responsive APA, the key principle of this sensing method is based on the chemical reaction between Ag+ and Cl-, which results in the precipitation of high-refractive index (RI) AgCl. This assay, distinct from typical plasmonic sensors that rely heavily on nanoparticle aggregation/anti-aggregation, is premised on the precipitation reaction of Ag+ and Cl-. In the presence of Cl-, a rapid, distinctive color alteration from royal purple to a dark sky blue is visually observable within a short time of a few minutes, eliminating the necessity for any surface modification procedures. Comprehensive assessments substantiated that these sensors display commendable sensitivity, selectivity, and stability, thereby establishing their effective applicability for Cl- analysis in various technological fields.

7.
Adv Appl Bioinform Chem ; 16: 61-91, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533689

RESUMEN

Background: Heterocyclic analogs of curcumin have a wide range of therapeutic potential and the ability to control the activity of a variety of metabolic enzymes. Methods: 1H-NMR and 13C-NMR spectroscopic techniques were used to determine the structures of synthesized compounds. The agar disc diffusion method and α-amylase inhibition assay were used to examine the antibacterial and anti-diabetic potential of the compounds against α-amylase enzyme inhibitory activity, respectively. DPPH-free radical scavenging and lipid peroxidation inhibition assays were used to assess the in vitro antioxidant potential. Results and Discussion: In this work, nine heterocyclic analogs derived from curcumin precursors under ultrasonic irradiation were synthesized in excellent yields (81.4-93.7%) with improved reaction time. Results of antibacterial activities revealed that compounds 8, and 11 displayed mean inhibition zone of 13.00±0.57, and 19.66±00 mm, respectively, compared to amoxicillin (12.87±1.41 mm) at 500 µg/mL against E. coli, while compounds 8, 11 and 16 displayed mean inhibition zone of 17.67±0.57, 14.33±0.57 and 23.33±00 mm, respectively, compared to amoxicillin (13.75±1.83 mm) at 500 µg/mL against P. aeruginosa. Compound 11 displayed a mean inhibition zone of 11.33±0.57 mm compared to amoxicillin (10.75±1.83 mm) at 500 µg/mL against S. aureus. Compound 11 displayed higher binding affinities of -7.5 and -8.3 Kcal/mol with penicillin-binding proteins (PBPs) and ß-lactamases producing bacterial strains, compared to amoxicillin (-7.2 and -7.9 Kcal/mol, respectively), these results are in good agreement with the in vitro antibacterial activities. In vitro antidiabetic potential on α-amylase enzyme revealed that compounds 11 (IC50=7.59 µg/mL) and 16 (IC50=4.08 µg/mL) have higher inhibitory activities than acarbose (IC50=8.0 µg/mL). Compound 8 showed promising antioxidant inhibition efficacy of DPPH (IC50 = 2.44 g/mL) compared to ascorbic acid (IC50=1.24 g/mL), while compound 16 revealed 89.9±20.42% inhibition of peroxide generation showing its potential in reducing the development of lipid peroxides. In silico molecular docking analysis, results are in good agreement with in vitro biological activity. In silico ADMET profiles suggested the adequate oral drug-likeness potential of the compounds without adverse effects. Conclusion: According to our findings, both biological activities and in silico computational studies results demonstrated that compounds 8, 11, and 16 are promising α-amylase inhibitors and antibacterial agents against E. coli, P. aeruginosa, and S. aureus, whereas compound 8 was found to be a promising antioxidant agent.

8.
Small ; 19(43): e2302980, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37376838

RESUMEN

A feasible nanoscale framework of heterogeneous plasmonic materials and proper surface engineering can enhance photoelectrochemical (PEC) water-splitting performance owing to increased light absorbance, efficient bulk carrier transport, and interfacial charge transfer. This article introduces a new magnetoplasmonic (MagPlas) Ni-doped Au@Fex Oy nanorods (NRs) based material as a novel photoanode for PEC water-splitting. A two stage procedure produces core-shell Ni/Au@Fex Oy MagPlas NRs. The first-step is a one-pot solvothermal synthesis of Au@Fex Oy . The hollow Fex Oy nanotubes (NTs) are a hybrid of Fe2 O3 and Fe3 O4 , and the second-step is a sequential hydrothermal treatment for Ni doping. Then, a transverse magnetic field-induced assembly is adopted to decorate Ni/Au@Fex Oy on FTO glass to be an artificially roughened morphologic surface called a rugged forest, allowing more light absorption and active electrochemical sites. Then, to characterize its optical and surface properties, COMSOL Multiphysics simulations are carried out. The core-shell Ni/Au@Fex Oy MagPlas NRs increase photoanode interface charge transfer to 2.73 mAcm-2 at 1.23 V RHE. This improvement is made possible by the rugged morphology of the NRs, which provide more active sites and oxygen vacancies as the hole transfer medium. The recent finding may provide light on plasmonic photocatalytic hybrids and surface morphology for effective PEC photoanodes.

9.
RSC Adv ; 13(13): 8753-8764, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936823

RESUMEN

In this study, bio-Ag/ZnO NCs were synthesized via a microwave-assisted biogenic electrochemical method using mangosteen (Garcinia mangostana) peel extract as a biogenic reducing agent for the reduction of Zn2+ and Ag+ ions to form hybrid nanoparticles. The as-synthesized NC samples at three different microwave irradiation temperatures (Z 70, Z 80, Z 90) exhibited a remarkable difference in size and crystallinity that directly impacted their electrocatalytic behaviors as well as electrochemical sensing performance. The obtained results indicate that the Z 90 sample showed the highest electrochemical performance among the investigated samples, which is attributed to the improved particle size distribution and crystal microstructure that enhanced charge transfer and the electroactive surface area. Under the optimal conditions for carbaryl pesticide detection, the proposed nanosensor exhibited a high electrochemical sensitivity of up to 0.303 µA µM-1 cm-2 with a detection limit of LOD ∼0.27 µM for carbaryl pesticide detection in a linear range of 0.25-100 µM. Overall, the present work suggests that bio-Ag/ZnO NCs are a potential candidate for the development of a high-performance electrochemical-based non-enzymatic nanosensor with rapid monitoring, cost-effectiveness, and eco-friendly to detect carbaryl pesticide residues in agricultural products.

10.
Sci Total Environ ; 857(Pt 2): 159446, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36252667

RESUMEN

Two-dimensional (2D) iron oxide-hydroxide (FeOOH) nanomaterials as low-cost and environmental-friendly composites are promising materials for application in heavy metal elimination. However, developing 2D FeOOH adsorbents with high adsorption capacity and excellent durability toward Cr (VI) removal is still a challenge due to the intrinsically non-layered structure. Here, a novel polyethyleneimine (PEI) functionalized 2D single-layer nano-raft-like α-FeOOH (α-FeOOH NF) consisted of parallel-aligned ultrathin nanowires was obtained via a facile one-pot hydrothermal approach. It was found that the 2D α-FeOOH NF nanostructure was formed by an in-plane iterative self-assembly mechanism, where α-FeOOH nanoparticles acted as intermediates and iterative seeds with anisotropic growth. The as-prepared 2D α-FeOOH NF possessed porous structure and high surface area, which provided a strong ability to capture the Cr (VI) ions in water. Benefiting from the unique structure and PEI modification, it exhibited fast adsorption kinetic rate, high reusability, and high adsorption capacity toward Cr(VI) removal. The removal mechanism involved adsorption and reduction process. Besides, the molecular dynamic simulations disclosed a facet-dependent Cr(VI) adsorption behavior of α-FeOOH. The maximum adsorption capacity was 67.1 mg/g and the removal efficiency still maintained 83.9 % in the fifth cycle. This work demonstrated that 2D α-FeOOH NF could be a promising adsorbent for Cr(VI) removal.


Asunto(s)
Nanocables , Contaminantes Químicos del Agua , Adsorción , Polietileneimina/química , Contaminantes Químicos del Agua/análisis , Cromo/análisis , Cinética
11.
ACS Omega ; 7(35): 30908-30919, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36092591

RESUMEN

CuO-ZnO nanocomposites (NCs) were synthesized using an aqueous extract of Verbascum sinaiticum Benth. (GH) plant. X-ray diffraction (XRD), spectroscopic, and microscopic methods were used to explore the crystallinity, optical properties, morphology, and other features of the CuO-ZnO samples. Furthermore, catalytic performances were investigated for methylene blue (MB) degradation and 4-nitrophenol (4-NP) reduction. According to the results, CuO-ZnO NCs with 20 wt % CuO showed enhanced photocatalytic activity against MB dye with a 0.017 min-1 rate constant compared to 0.0027 min-1 for ZnO nanoparticles (NPs). Similarly, a ratio constant of 5.925 min-1 g-1 4-NP reductions was achieved with CuO-ZnO NCs. The results signified enhanced performance of CuO-ZnO NCs relative to ZnO NPs. The enhancement could be due to the synergy between ZnO and CuO, resulting in improved absorption of visible light and reduced electron-hole (e-/h+) recombination rate. In addition, variations in the CuO content affected the performance of the CuO-ZnO NCs. Thus, the CuO-ZnO NCs prepared using V. sinaiticum Benth. extract could make the material a desirable catalyst for the elimination of organic pollutants.

12.
J Phys Chem Lett ; 13(26): 6085-6092, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35759217

RESUMEN

Porous core-shell nanoparticles (NPs) have emerged as a promising material for broad ranges of applications in catalysts, material chemistry, biology, and optical sensors. Using a typical Ag core-Fe3O4 shell NP, a.k.a., magnetoplasmonic (MagPlas) NP, two porous shell models were prepared: i.e., Ag@Fe3O4 NPs and its SiO2-covered NPs (Ag@Fe3O4@SiO2). We suggested using cyclic voltammetry (CV) to provide unprecedented insight into the porosity of the core-shell NPs caused by the applied potential, resulting in the selective redox activities of the core and porous shell components of Ag@Fe3O4 NPs and Ag@Fe3O4@SiO2 NPs at different cycles of CV. The porous and nonporous core-shell nanostructures were qualitatively and quantitatively determined by the electrochemical method. The ratio of the oxidation current peak (µA) of Ag to Ag+ in the porous shell to that in the SiO2 coated (nonporous) shell was 400:3.2. The suggested approach and theoretical background could be extended to other types of multicomponent NP complexes.


Asunto(s)
Nanopartículas , Nanoestructuras , Catálisis , Nanopartículas/química , Nanoestructuras/química , Porosidad , Dióxido de Silicio/química
13.
Nanomaterials (Basel) ; 11(6)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070272

RESUMEN

Water splitting driven by renewable energy sources is considered a sustainable way of hydrogen production, an ideal fuel to overcome the energy issue and its environmental challenges. The rational design of electrocatalysts serves as a critical point to achieve efficient water splitting. Layered double hydroxides (LDHs) with two-dimensionally (2D) layered structures hold great potential in electrocatalysis owing to their ease of preparation, structural flexibility, and tenability. However, their application in catalysis is limited due to their low activity attributed to structural stacking with irrational electronic structures, and their sluggish mass transfers. To overcome this challenge, attempts have been made toward adjusting the morphological and electronic structure using appropriate design strategies. This review highlights the current progress made on design strategies of transition metal-based LDHs (TM-LDHs) and their application as novel catalysts for oxygen evolution reactions (OERs) in alkaline conditions. We describe various strategies employed to regulate the electronic structure and composition of TM-LDHs and we discuss their influence on OER performance. Finally, significant challenges and potential research directions are put forward to promote the possible future development of these novel TM-LDHs catalysts.

14.
J Colloid Interface Sci ; 588: 646-656, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33267951

RESUMEN

HYPOTHESIS: Here, FePd magnetic nanoparticles (MNPs) are developed as artificial enzymes with high biocompatibility and reusability. EXPERIMENT: The nanoparticles (NPs) are synthesized in an aqueous solvent by one-pot synthesis utilizing glutathione (GSH) and cysteine (Cys) as surfactants. FINDINGS: The prepared hydrophilic FePd NPs are redispersible in water. Further, they exhibit catalytic activity for the degradation of rhodamine B (RhB), as well as for the inhibition of reactive oxygen species (ROS) production induced by H2O2, which are two- and seven-fold enhancements of their catalytic performances, respectively, compared with that of horseradish peroxidase. The computational simulation and electrochemical analysis indicate that the enhancement of the catalytic effect is due to the protection of the MNP surface by GSH and Cys. In vitro experiments reveal that FePd MNPs behave like a peroxidase and decrease the ROS in mammalian cells. The cytotoxicity assessment of FePd MNPs via exposures to different cell lines for over seven days indicates that they can maintain the cell viability of >90% for up to 20 µgmL-1 concentration. FePd MNPs with high saturation magnetization and biocompatibility can be utilized as recyclable peroxidase-mimicking nanozymes and biosensors in a variety of catalytic and biological applications.


Asunto(s)
Nanopartículas de Magnetita , Paladio , Especies Reactivas de Oxígeno , Rodaminas , Animales , Peróxido de Hidrógeno , Hierro , Rodaminas/química
15.
Nanoscale ; 12(15): 8453-8465, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32239078

RESUMEN

Control of the chemical and physical properties of nanoscale colloids and their nanoassemblies remains a challenging issue for enhancing the performance and functionalities of nanodevices. In this study, we report a post-synthesis etching method to tailor the porosity of the Fe3O4 shells coating on Ag NPs, establishing a facile but effective approach to regulate the chemical and optical properties of the colloids and their assembled structures. As the shell porosity increases, the NPs are transformed, producing enhanced catalytic activity and the surface-enhanced Raman spectroscopy (SERS) effect, which results from enhanced chemical diffusion into the Ag core. Magnetoplasmonic (MagPlas) one- (1D) and two- (2D) dimensional arrays fabricated using these porosity-controllable NPs exhibit intriguing plasmon properties that are strongly affected by the porosity of the particle shell. Furthermore, the bright coloration of the 2D arrays is tuned by changing the shell porosity or introducing an additional metallic layer. Such 1D and 2D porous MagPlas metastructures possessing Fe3O4 shells with tunable porosities are a fulcrum for developing recyclable catalysts and tunable optical filters with optimized activity, selectivity, and sensitivity, as well as color displays and sensing platforms.

16.
ACS Appl Mater Interfaces ; 12(5): 6598-6606, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31922383

RESUMEN

The Lorentz or Kelvin force generated by an externally applied magnetic field may introduce additional convection of the electrolyte near the working electrode and consequently produces magnetocurrent (MC), which can be attributed to the magnetohydrodynamic (MHD) flow and an extra electrochemical reaction. A magnetoplasmonic (MagPlas) composite of metallic and superparamagnetic nanoparticles (NPs) with a permanent dipole or magnetic moment have additional degree or order, which corresponds to directional correlation to electric and magnetic dipoles. In particular, an ordered self-assembly may boost up the MHD flow on a collectively reactive surface, leading to remarkable electrochemical performance. In this article, a proof-of-concept work explores the effect of the magnetic field on the electrocatalytic activity of the oxygen reduction reaction (ORR) as well as [Fe(CN)6]3-/4- redox probes using a precisely controlled three-dimensional (3D) nanostructure of a silver core and a porous magnetic shell (Ag@Fe3O4) assembly. Then, the reduction current was carefully monitored in the presence of a magnetic field (B, up to 380 mT), resulting in an extraordinary increment of reduction current (IR) of [Fe(CN)6]3- by 23% and a 1.13-fold high ORR efficiency owing to the additional magnetic field (Bin) from the 3D magnetoplasmonic nanoassembly. The computational simulation explained the plausible mechanism of current enhancement from the MagPlas nanoassembly. From our experimental and computational studies, it is probable that the 3D MagPlas nanoassembly is a unique and efficient catalyst under a low external magnetic field, which would be useful for further biomedical and energy-related applications.

17.
Curr Med Chem ; 26(11): 1946-1959, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30207212

RESUMEN

BACKGROUND: Tuberculosis (TB), one of the leading causes of death worldwide, is difficult to diagnose based only on signs and symptoms. Methods for TB detection are continuously being researched to design novel effective clinical tools for the diagnosis of TB. OBJECTIVE: This article reviews the methods to diagnose TB at the latent and active stages and to recognize prospective TB diagnostic methods based on nanomaterials. METHODS: The current methods for TB diagnosis were reviewed by evaluating their advantages and disadvantages. Furthermore, the trends in TB detection using nanomaterials were discussed regarding their performance capacity for clinical diagnostic applications. RESULTS: Current methods such as microscopy, culture, and tuberculin skin test are still being employed to diagnose TB, however, a highly sensitive point of care tool without false results is still needed. The utilization of nanomaterials to detect the specific TB biomarkers with high sensitivity and specificity can provide a possible strategy to rapidly diagnose TB. Although it is challenging for nanodiagnostic platforms to be assessed in clinical trials, active TB diagnosis using nanomaterials is highly expected to achieve clinical significance for regular application. In addition, aspects and future directions in developing the high-efficiency tools to diagnose active TB using advanced nanomaterials are expounded. CONCLUSION: This review suggests that nanomaterials have high potential as rapid, costeffective tools to enhance the diagnostic sensitivity and specificity for the accurate diagnosis, treatment, and prevention of TB. Hence, portable nanobiosensors can be alternative effective tests to be exploited globally after clinical trial execution.


Asunto(s)
Antígenos Bacterianos/análisis , Técnicas Biosensibles/tendencias , Nanopartículas/química , Tuberculosis/diagnóstico , Biomarcadores/análisis , Técnicas Biosensibles/métodos , Humanos , Mycobacterium tuberculosis/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...