Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5914, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37739939

RESUMEN

Association with hypomethylating agents is a promising strategy to improve the efficacy of immune checkpoint inhibitors-based therapy. The NIBIT-M4 was a phase Ib, dose-escalation trial in patients with advanced melanoma of the hypomethylating agent guadecitabine combined with the anti-CTLA-4 antibody ipilimumab that followed a traditional 3 + 3 design (NCT02608437). Patients received guadecitabine 30, 45 or 60 mg/m2/day subcutaneously on days 1 to 5 every 3 weeks starting on week 0 for a total of four cycles, and ipilimumab 3 mg/kg intravenously starting on day 1 of week 1 every 3 weeks for a total of four cycles. Primary outcomes of safety, tolerability, and maximum tolerated dose of treatment were previously reported. Here we report the 5-year clinical outcome for the secondary endpoints of overall survival, progression free survival, and duration of response, and an exploratory integrated multi-omics analysis on pre- and on-treatment tumor biopsies. With a minimum follow-up of 45 months, the 5-year overall survival rate was 28.9% and the median duration of response was 20.6 months. Re-expression of immuno-modulatory endogenous retroviruses and of other repetitive elements, and a mechanistic signature of guadecitabine are associated with response. Integration of a genetic immunoediting index with an adaptive immunity signature stratifies patients/lesions into four distinct subsets and discriminates 5-year overall survival and progression free survival. These results suggest that coupling genetic immunoediting with activation of adaptive immunity is a relevant requisite for achieving long term clinical benefit by epigenetic immunomodulation in advanced melanoma patients.


Asunto(s)
Melanoma , Multiómica , Humanos , Ipilimumab/uso terapéutico , Estudios de Seguimiento , Melanoma/tratamiento farmacológico , Melanoma/genética
2.
PLoS One ; 17(8): e0272259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35917375

RESUMEN

Although the simple diffusion model can effectively describe the movement of eukaryotic cells on a culture surface observed at relatively low sampling frequency, at higher sampling rates more complex models are often necessary to better fit the experimental data. Currently available models can describe motion paths by involving additional parameters, such as linearity or directional persistence in time. However sometimes difficulties arise as it is not easy to effectively evaluate persistence in presence of a directional bias. Here we present a procedure which helps solve this problem, based on a model which describes displacement as the vectorial sum of three components: diffusion, persistence and directional bias. The described model has been tested by analysing the migratory behaviour of simulated cell populations and used to analyse a collection of experimental datasets, obtained by observing cell cultures in time lapse microscopy. Overall, the method produces a good description of migration behaviour as it appears to capture the expected increase in the directional bias in presence of wound without a large concomitant increase in the persistence module, allowing it to remain as a physically meaningful quantity in the presence of a directional stimulus.


Asunto(s)
Células Eucariotas , Movimiento Celular
3.
Int J Mol Sci ; 23(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35456974

RESUMEN

Tracing the appearance and evolution of virus variants is essential in the management of the COVID-19 pandemic. Here, we focus on SARS-CoV-2 spread in Italian patients by using viral sequences deposited in public databases and a tracing procedure which is used to monitor the evolution of the pandemic and detect the spreading, within the infected population of emergent sub-clades with a potential positive selection. Analyses of a collection of monthly samples focused on Italy highlighted the appearance and evolution of all the main viral sub-trees emerging at the end of the first year of the pandemic. It also identified additional expanding subpopulations which spread during the second year (i.e., 2021). Three-dimensional (3D) modelling of the main amino acid changes in mutated viral proteins, including ORF1ab (nsp3, nsp4, 2'-o-ribose methyltransferase, nsp6, helicase, nsp12 [RdRp]), N, ORF3a, ORF8, and spike proteins, shows the potential of the analysed structural variations to result in epistatic modulation and positive/negative selection pressure. These analyzes will be of importance to the early identification of emerging clades, which can develop into new "variants of concern" (i.e., VOC). These analyses and settings will also help SARS-CoV-2 coronet genomic centers in other countries to trace emerging worldwide variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Mutación , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
Crit Rev Oncol Hematol ; 163: 103394, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34119656

RESUMEN

The cancer secretome is a valuable reservoir of cancer biomarkers. Besides containing circulating tumor cells, extracellular vesicles, and proteins, it is also rich in circulating tumor DNA (ctDNA)-a subpopulation of cell free DNA. The most efficient technology to capture ctDNA is next generation sequencing (NGS). Indeed, this analysis enables the identification of both quantitative (e.g., mutant allelic fraction - MAF) and qualitative (e.g., the variant type) information. Strikingly, by calculating these data in relation to time, cytopathologists can decodify and graphically report the ctDNA "message", which may help to diagnose cancer, define treatment, and monitor disease evolution. In this paper, we report the most compelling evidence steadily accumulating on the successful application of NGS-based ctDNA analysis in cancer diagnosis, treatment decision, and monitoring of cancer progression. We also propose a mathematical model that calculates MAF evolution in relation to time.


Asunto(s)
ADN Tumoral Circulante , Neoplasias , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Matemática , Mutación , Neoplasias/diagnóstico , Neoplasias/genética , Patología Molecular
5.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800150

RESUMEN

Celiac disease (CD) is a frequent intestinal inflammatory disease occurring in genetically susceptible individuals upon gluten ingestion. Recent studies point to a role in CD for genes involved in cell shape, adhesion and actin rearrangements, including a Rho family regulator, Rho GTPase-activating protein 31 (ARHGAP31). In this study, we investigated the morphology and actin cytoskeletons of peripheral monocyte-derived dendritic cells (DCs) from children with CD and controls when in contact with a physiological substrate, fibronectin. DCs were generated from peripheral blood monocytes of pediatric CD patients and controls. After adhesion on fibronectin, DCs showed a higher number of protrusions and a more elongated shape in CD patients compared with controls, as assessed by immunofluorescence actin staining, transmitted light staining and video time-lapse microscopy. These alterations did not depend on active intestinal inflammation associated with gluten consumption and were specific to CD, since they were not found in subjects affected by other intestinal inflammatory conditions. The elongated morphology was not a result of differences in DC activation or maturation status, and did not depend on the human leukocyte antigen (HLA)-DQ2 haplotype. Notably, we found that ARH-GAP31 mRNA levels were decreased while RhoA-GTP activity was increased in CD DCs, pointing to an impairment of the Rho pathway in CD cells. Accordingly, Rho inhibition was able to prevent the cytoskeleton rearrangements leading to the elongated morphology of celiac DCs upon adhesion on fibronectin, confirming the role of this pathway in the observed phenotype. In conclusion, adhesion on fibronectin discriminated CD from the controls' DCs, revealing a gluten-independent CD-specific cellular phenotype related to DC shape and regulated by RhoA activity.


Asunto(s)
Actinas/metabolismo , Enfermedad Celíaca/metabolismo , Forma de la Célula , Células Dendríticas/inmunología , Monocitos/metabolismo , Enfermedad Celíaca/patología , Adhesión Celular , Niño , Preescolar , Células Dendríticas/patología , Femenino , Fibronectinas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Antígenos HLA-DQ/metabolismo , Humanos , Masculino , Monocitos/patología , Fosfoproteínas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
6.
Front Med (Lausanne) ; 8: 633923, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644101

RESUMEN

Molecular cytopathology is a rapidly evolving field embracing both conventional microscopy and molecular pathology. Its growing popularity stems from the fact that in many types of advanced cancers, including non small cell lung cancer (NSCLC), cytological samples often constitute the only available specimens for morphomolecular analysis. Indeed, non formalin fixed and paraffin embedded (FFPE) cytological samples feature a higher quality of extracted nucleic acids than histological specimens. However, because of the growing complexity of molecular testing, several efforts should be made to validate the analytical performance of the wide array of currently available molecular technologies, including next generation sequencing (NGS). This technology has the terrific advantage of allowing simultaneous detection of scores of predictive biomarkers even in low-input DNA/RNA specimens. Here, we briefly review the role of the modern cytopathologist in the morphomolecular diagnosing of advanced stage NSCLC and the adoption of NGS in conventional cytopreparations (cell blocks, direct smears, and liquid-based cytology) and supernatants.

7.
Cancers (Basel) ; 13(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406752

RESUMEN

Gene fusions represent novel predictive biomarkers for advanced non-small cell lung cancer (NSCLC). In this study, we validated a narrow NGS gene panel able to cover therapeutically-relevant gene fusions and splicing events in advanced-stage NSCLC patients. To this aim, we first assessed minimal complementary DNA (cDNA) input and the limit of detection (LoD) in different cell lines. Then, to evaluate the feasibility of applying our panel to routine clinical samples, we retrospectively selected archived lung adenocarcinoma histological and cytological (cell blocks) samples. Overall, our SiRe RNA fusion panel was able to detect all fusions and a splicing event harbored in a RNA pool diluted up to 2 ng/µL. It also successfully analyzed 46 (95.8%) out of 48 samples. Among these, 43 (93.5%) out of 46 samples reproduced the same results as those obtained with conventional techniques. Intriguingly, the three discordant results were confirmed by a CE-IVD automated real-time polymerase chain reaction (RT-PCR) analysis (Easy PGX platform, Diatech Pharmacogenetics, Jesi, Italy). Based on these findings, we conclude that our new SiRe RNA fusion panel is a valid and robust tool for the detection of clinically relevant gene fusions and splicing events in advanced NSCLC.

8.
Cancer Cytopathol ; 129(6): 460-467, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33378102

RESUMEN

BACKGROUND: Immune-checkpoint inhibitors (ICIs) represent an important treatment option for patients who have advanced stage non-small cell lung cancer (NSCLC). Currently, evaluation of the expression level of programmed death-ligand 1 (PD-L1) has proven highly successful as a positive predictive biomarker for ICIs. In addition to PD-L1, other promising predictive biomarkers are emerging, including high tumor mutational burden (TMB-H). However, measuring TMB-H remains challenging for several reasons, among which is the difficulty in obtaining adequate tissue material from NSCLC patients. There are no data in the current literature regarding the possibility of adopting cell blocks (CBs) for TMB evaluation; therefore, our goal was to evaluate the feasibility of analyzing TMB on CBs. METHODS: For evaluation of differences in run metric parameters, 8 pairs of histological and CB samples from patients with NSCLC were analyzed using the Oncomine Tumor Mutational Load Assay on Ion Torrent S5 GS next-generation sequencing (NGS) platform. RESULTS: Most CBs (6/8, 75.0%) were successfully analyzed by adopting the broad NGS panel approach. CBs provided results similar to those obtained on histological matched specimens in terms of median total reads (7207048.80 vs 7558817.80), median mapped reads (7075753.83 vs 7513822.00), median read lengths (115.50 vs. 113.00), median percentage of reads on-target (97.49% vs. 98.45%), median average reads per amplicon (454.67 vs 476.14), and median uniformity of amplicon coverage (83.52% vs 84.13%). CONCLUSION: In this pilot study, we demonstrated the technical feasibility of assessing TMB on CBs.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Técnicas Citológicas/métodos , Análisis Mutacional de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias Pulmonares/genética , Mutación , Anciano , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/patología , Masculino , Proyectos Piloto , Pronóstico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...