Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 127(34): 7186-7197, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37590893

RESUMEN

A collaborative effort between experiment and theory toward elucidating the electronic and molecular structures of uranium-gold clusters is presented. Anion photoelectron spectra of UAun-(n = 3-7) were taken at the third (355 nm) and fourth (266 nm) harmonics of a Nd:YAG laser, as well as excimer (ArF 193 nm) photon energies, where the experimental adiabatic electron affinities and vertical detachment energies values were measured. Complementary first-principles calculations were subsequently carried out to corroborate experimentally determined electron detachment energies and to determine the geometry and electronic structure for each cluster. Except for the ring-like neutral isomer of UAu6 where one unpaired electron is spread over the Au atoms, all other neutral and anionic UAun clusters (n = 3-7) were calculated to possess open-shell electrons with the unpaired electrons localized on the central U atom. The smaller clusters closely resemble the analogous UFn species, but significant deviations are seen starting with UAu5 where a competition between U-Au and Au-Au bonding begins to become apparent. The UAu6 system appears to mark a transition where Au-Au interactions begin to dominate, where both a ring-like and two heavily distorted octahedral structures around the central U atom are calculated to be nearly isoenergetic. With UAu7, only ring-like structures are calculated. Overall, the calculated electron detachment energies are in good agreement with the experimental values.

2.
J Am Chem Soc ; 145(16): 9059-9071, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37040588

RESUMEN

Single-strand breaks (SSBs) induced via electron attachment were previously observed in dry DNA under ultrahigh vacuum (UHV), while hydrated electrons were found not able to induce this DNA damage in an aqueous solution. To explain these findings, crossed electron-molecular beam (CEMB) and anion photoelectron spectroscopy (aPES) experiments coupled to density functional theory (DFT) modeling were used to demonstrate the fundamental importance of proton transfer (PT) in radical anions formed via electron attachment. Three molecular systems were investigated: 5'-monophosphate of 2'-deoxycytidine (dCMPH), where PT in the electron adduct is feasible, and two ethylated derivatives, 5'-diethylphosphate and 3',5'-tetraethyldiphosphate of 2'-deoxycytidine, where PT is blocked due to substitution of labile protons with the ethyl residues. CEMB and aPES experiments confirmed the cleavage of the C3'/C5'-O bond as the main dissociation channel related to electron attachment in the ethylated derivatives. In the case of dCMPH, however, electron attachment (in the aPES experiments) yielded its parent (intact) radical anion, dCMPH-, suggesting that its dissociation was inhibited. The aPES-measured vertical detachment energy of the dCMPH- was found to be 3.27 eV, which agreed with its B3LYP/6-31++G(d,p)-calculated value and implied that electron-induced proton transfer (EIPT) had occurred during electron attachment to the dCMPH model nucleotide. In other words, EIPT, subduing dissociation, appeared to be somewhat protective against SSB. While EIPT is facilitated in solution compared to the dry environment, the above findings are consistent with the stability of DNA against hydrated electron-induced SSB in solution versus free electron-induced SSB formation in dry DNA.


Asunto(s)
Hominidae , Protones , Animales , Modelos Moleculares , Electrones , ADN/química , Aniones/química , Daño del ADN
3.
J Am Chem Soc ; 144(43): 19685-19688, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36279217

RESUMEN

Here, anion photoelectron spectroscopy and first-principles quantum chemistry are used to demonstrate to what degree Au can act as a surrogate for F in UF6 and its anion. Unlike UF6, UAu6 exhibits strong ligand-ligand, i.e., Au-Au, interactions, resulting in three low-lying isomers, two of which are three-dimensional while the third isomer has a ring-like quasi two-dimensional structure. Additionally, all the UAu6 isomers have open-shell electrons, which in nearly all cases are localized on the central U atom. The adiabatic electron affinity and vertical detachment energy are measured to be 3.05 ± 0.05 and 3.28 ± 0.05 eV, respectively, and are in very good agreement with calculations.


Asunto(s)
Electrones , Ligandos , Espectroscopía de Fotoelectrones , Aniones/química , Isomerismo
4.
J Phys Chem A ; 126(27): 4432-4443, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35767645

RESUMEN

The results of ab initio correlated molecular orbital theory electronic structure calculations for low-lying electronic states are presented for UH and UH- and compared to photoelectron spectroscopy measurements. The calculations were performed at the CCSD(T)/CBS and multireference CASPT2 including spin-orbit effects by the state interacting approach levels. The ground states of UH and UH- are predicted to be 4Ι9/2 and 5Λ6, respectively. The spectroscopic parameters Te, re, ωe, ωexe, and Be were obtained, and potential energy curves were calculated for the low energy Ω states of UH. The calculated adiabatic electron affinity is 0.468 eV in excellent agreement with an experimental value of 0.462 ± 0.013 eV. The lowest vertical detachment energy was predicted to be 0.506 eV for the ground state, and the adiabatic ionization energy (IE) is predicted to be 6.116 eV. The bond dissociation energy (BDE) and heat of formation values of UH were obtained using the IE calculated at the Feller-Peterson-Dixon level. For UH, UH-, and UH+, the BDEs were predicted to be 225.5, 197.9, and 235.5 kJ/mol, respectively. The BDE for UH is predicted to be ∼20% lower in energy than that for ThH. The analysis of the natural bond orbitals shows a significant U+H- ionic component in the bond of UH.

5.
J Phys Chem A ; 126(2): 198-210, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34989579

RESUMEN

High-level electronic structure calculations of the low-lying energy electronic states for ThH, ThH-, and ThH+ are reported and compared to experimental measurements. The inclusion of spin-orbit coupling is critical to predict the ground-state ordering as inclusion of spin-orbit switches the coupled-cluster CCSD(T) ordering of the two lowest energy states for ThH and ThH+. At the multireference spin-orbit SO-CASPT2 level, the ground states of ThH, ThH-, and ThH+ are predicted to be the 2Δ3/2, 3Φ2, and 3Δ1 states, respectively. The adiabatic electron affinity is calculated to be 0.820 eV, and the vertical detachment energy is calculated to be 0.832 eV in comparison to an experimental value of 0.87 ± 0.02 eV. The observed ThH- photoelectron spectrum has many transitions, which approximately correlate with excitations of Th+ and/or Th. The adiabatic ionization energy of ThH including spin-orbit corrections is calculated to be 6.181 eV. The natural bond orbital results are consistent with a significant contribution of the Th+H- ionic configuration to the bonding in ThH. The bond dissociation energies for ThH, ThH-, and ThH+ using the Feller-Peterson-Dixon approach were calculated to be similar for all three molecules and lie between 259 and 280 kJ/mol.

6.
Angew Chem Int Ed Engl ; 59(41): 17958-17965, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32510720

RESUMEN

Triene 6π electrocyclization, wherein a conjugated triene undergoes a concerted stereospecific cycloisomerization to a cyclohexadiene, is a reaction of great historical and practical significance. In order to circumvent limitations imposed by the normally harsh reaction conditions, chemists have long sought to develop catalytic variants based upon the activating power of metal-alkene coordination. Herein, we demonstrate the first successful implementation of such a strategy by utilizing [(C5 H5 )Ru(NCMe)3 ]PF6 as a precatalyst for the disrotatory 6π electrocyclization of highly substituted trienes that are resistant to thermal cyclization. Mechanistic and computational studies implicate hexahapto transition-metal coordination as responsible for lowering the energetic barrier to ring closure. This work establishes a foundation for the development of new catalysts for stereoselective electrocyclizations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...