Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 204(6): 336, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35587838

RESUMEN

Genomic and metabolomic studies of endolithic bacteria are essential for understanding their adaptations to extreme conditions of the rock environment and their contributions to mineralization and weathering processes. The endoliths of arid serpentine rocks are exposed to different environmental stresses, including desiccation and re-hydration, temperature fluctuations, oligotrophy, and high concentrations of heavy metals. Bacteria of the genus Rhodococcus commonly inhabit endolithic environments. Here, we describe genomic and metabolomic analyses of the non-pathogenic wild-type Rhodococcus fascians strain S11, isolated from weathered serpentine rock at the arid Khalilovsky massif, Russia. We found that strain S11 lacks the virulence plasmid that functions in the phytopathogenecity of some R. fascians strains. Phenotypic profiling revealed a high pH tolerance, phytase activity and siderophore production. A widely untargeted metabolome analysis performed using an Orbitrap LC-MS/MS method demonstrated the presence of chrysobactin-type siderophores in the culture medium of strain S11. The natural variation of secondary metabolites produced by strain S11 might provide a practical basis for revealing antibacterial, fungicide or insecticidal activities. Finally, plant infection and plant growth stimulation studies showed no observable effect of exposure strain S11 bacteria on the aerial and root parts of Arabidopsis thaliana plants. Based on our findings, R. fascians strain S11 might be promising tool for investigations of organo-mineral interactions, heavy metal bioremediation, and mechanisms of bacterial mediated weathering of plant-free serpentine rock to soil.


Asunto(s)
Arabidopsis , Rhodococcus , Arabidopsis/microbiología , Cromatografía Liquida , Genómica , Plantas/microbiología , Rhodococcus/genética , Rhodococcus/metabolismo , Sideróforos/metabolismo , Espectrometría de Masas en Tándem
2.
Proc Natl Acad Sci U S A ; 119(17): e2116722119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35412864

RESUMEN

The bacterial pathogen Yersinia pestis gave rise to devastating outbreaks throughout human history, and ancient DNA evidence has shown it afflicted human populations as far back as the Neolithic. Y. pestis genomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to its emergence from a Yersinia pseudotuberculosis-like progenitor; however, the number of reconstructed LNBA genomes are too few to explore its diversity during this critical period of development. Here, we present 17 Y. pestis genomes dating to 5,000 to 2,500 y BP from a wide geographic expanse across Eurasia. This increased dataset enabled us to explore correlations between temporal, geographical, and genetic distance. Our results suggest a nonflea-adapted and potentially extinct single lineage that persisted over millennia without significant parallel diversification, accompanied by rapid dispersal across continents throughout this period, a trend not observed in other pathogens for which ancient genomes are available. A stepwise pattern of gene loss provides further clues on its early evolution and potential adaptation. We also discover the presence of the flea-adapted form of Y. pestis in Bronze Age Iberia, previously only identified in in the Caucasus and the Volga regions, suggesting a much wider geographic spread of this form of Y. pestis. Together, these data reveal the dynamic nature of plague's formative years in terms of its early evolution and ecology.


Asunto(s)
Genoma Bacteriano , Peste , Yersinia pestis , Crianza de Animales Domésticos/historia , Animales , ADN Antiguo , Variación Genética , Historia Antigua , Migración Humana/historia , Humanos , Filogenia , Peste/epidemiología , Peste/historia , Peste/microbiología , Yersinia pestis/clasificación , Yersinia pestis/genética , Yersinia pestis/aislamiento & purificación
3.
Science ; 374(6564): 182-188, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34618559

RESUMEN

Hepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between ~10,500 and ~400 years ago. We date the most recent common ancestor of all HBV lineages to between ~20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene. After the European Neolithic transition, Mesolithic HBV strains were replaced by a lineage likely disseminated by early farmers that prevailed throughout western Eurasia for ~4000 years, declining around the end of the 2nd millennium BCE. The only remnant of this prehistoric HBV diversity is the rare genotype G, which appears to have reemerged during the HIV pandemic.


Asunto(s)
Enfermedades Transmisibles Emergentes/historia , Evolución Molecular , Virus de la Hepatitis B/clasificación , Virus de la Hepatitis B/genética , Hepatitis B/historia , Américas , Asia , Pueblo Asiatico , Enfermedades Transmisibles Emergentes/virología , Europa (Continente) , Variación Genética , Genómica , Hepatitis B/virología , Historia Antigua , Humanos , Paleontología , Filogenia , Población Blanca , Indio Americano o Nativo de Alaska
4.
BMC Biol ; 19(1): 220, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34610848

RESUMEN

BACKGROUND: Hansen's disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease's complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. RESULTS: Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae's genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. CONCLUSIONS: Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease's global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy's global history and can contribute to current models of M. leprae's worldwide dissemination, including interspecies transmissions.


Asunto(s)
Mycobacterium leprae , Europa (Continente) , Genoma Bacteriano/genética , Humanos , Lepra/genética , Mycobacterium leprae/genética , Dinámica Poblacional
5.
Arch Microbiol ; 203(2): 855-860, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33025059

RESUMEN

The success of members of the genus Rhodococcus in colonizing arid rocky environments is owed in part to desiccation tolerance and an ability to extract iron through the secretion and uptake of siderophores. Here, we report a comprehensive genomic and taxonomic analysis of Rhodococcus qingshengii strain S10 isolated from eathered serpentine rock at the arid Khalilovsky massif, Russia. Sequence comparisons of whole genomes and of selected marker genes clearly showed strain S10 to belong to the R. qingshengii species. Four prophage sequences within the R. qingshengii S10 genome were identified, one of which encodes for a putative siderophore-interacting protein. Among the ten non-ribosomal peptides synthase (NRPS) clusters identified in the strain S10 genome, two show high homology to those responsible for siderophore synthesis. Phenotypic analyses demonstrated that R. qingshengii S10 secretes siderophores and possesses adaptive features (tolerance of up to 8% NaCl and pH 9) that should enable survival in its native habitat within dry serpentine rock.


Asunto(s)
Rhodococcus/enzimología , Rhodococcus/genética , Sideróforos/metabolismo , Clima Desértico , Ambiente , Genoma Bacteriano/genética , Hierro/metabolismo , Péptido Sintasas/genética , Profagos/genética , Federación de Rusia
6.
Nat Commun ; 10(1): 4470, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578321

RESUMEN

The second plague pandemic, caused by Yersinia pestis, devastated Europe and the nearby regions between the 14th and 18th centuries AD. Here we analyse human remains from ten European archaeological sites spanning this period and reconstruct 34 ancient Y. pestis genomes. Our data support an initial entry of the bacterium through eastern Europe, the absence of genetic diversity during the Black Death, and low within-outbreak diversity thereafter. Analysis of post-Black Death genomes shows the diversification of a Y. pestis lineage into multiple genetically distinct clades that may have given rise to more than one disease reservoir in, or close to, Europe. In addition, we show the loss of a genomic region that includes virulence-related genes in strains associated with late stages of the pandemic. The deletion was also identified in genomes connected with the first plague pandemic (541-750 AD), suggesting a comparable evolutionary trajectory of Y. pestis during both events.


Asunto(s)
ADN Bacteriano/genética , Genoma Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Pandemias , Peste/epidemiología , Yersinia pestis/genética , Arqueología/métodos , ADN Bacteriano/química , ADN Bacteriano/clasificación , Europa Oriental/epidemiología , Fósiles , Humanos , Filogenia , Filogeografía , Peste/microbiología , Polimorfismo de Nucleótido Simple , Factores de Tiempo , Virulencia/genética , Yersinia pestis/patogenicidad
7.
Nat Commun ; 9(1): 2234, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884871

RESUMEN

The origin of Yersinia pestis and the early stages of its evolution are fundamental subjects of investigation given its high virulence and mortality that resulted from past pandemics. Although the earliest evidence of Y. pestis infections in humans has been identified in Late Neolithic/Bronze Age Eurasia (LNBA 5000-3500y BP), these strains lack key genetic components required for flea adaptation, thus making their mode of transmission and disease presentation in humans unclear. Here, we reconstruct ancient Y. pestis genomes from individuals associated with the Late Bronze Age period (~3800 BP) in the Samara region of modern-day Russia. We show clear distinctions between our new strains and the LNBA lineage, and suggest that the full ability for flea-mediated transmission causing bubonic plague evolved more than 1000 years earlier than previously suggested. Finally, we propose that several Y. pestis lineages were established during the Bronze Age, some of which persist to the present day.


Asunto(s)
ADN Antiguo/análisis , Genoma Bacteriano/genética , Peste/transmisión , Yersinia pestis/genética , Animales , Pulpa Dental/microbiología , Infestaciones por Pulgas/epidemiología , Infestaciones por Pulgas/microbiología , Infestaciones por Pulgas/transmisión , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pandemias , Filogenia , Peste/epidemiología , Peste/microbiología , Polimorfismo de Nucleótido Simple , Federación de Rusia/epidemiología , Siphonaptera/microbiología , Virulencia/genética , Yersinia pestis/clasificación , Yersinia pestis/patogenicidad
8.
Cell Host Microbe ; 19(6): 874-81, 2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-27281573

RESUMEN

Ancient DNA analysis has revealed an involvement of the bacterial pathogen Yersinia pestis in several historical pandemics, including the second plague pandemic (Europe, mid-14(th) century Black Death until the mid-18(th) century AD). Here we present reconstructed Y. pestis genomes from plague victims of the Black Death and two subsequent historical outbreaks spanning Europe and its vicinity, namely Barcelona, Spain (1300-1420 cal AD), Bolgar City, Russia (1362-1400 AD), and Ellwangen, Germany (1485-1627 cal AD). Our results provide support for (1) a single entry of Y. pestis in Europe during the Black Death, (2) a wave of plague that traveled toward Asia to later become the source population for contemporary worldwide epidemics, and (3) the presence of an historical European plague focus involved in post-Black Death outbreaks that is now likely extinct.


Asunto(s)
Pandemias/historia , Peste/historia , Peste/microbiología , Yersinia pestis/genética , Asia/epidemiología , Huesos/microbiología , ADN Bacteriano/genética , Reservorios de Enfermedades , Europa (Continente)/epidemiología , Genoma Bacteriano , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia Medieval , Humanos , Epidemiología Molecular , Filogenia , Peste/epidemiología , Diente/microbiología , Yersinia pestis/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...