Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vasc Res ; 60(4): 213-226, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37778342

RESUMEN

INTRODUCTION: Cardiovascular disorders are characterized by vascular smooth muscle (VSM) transition from a contractile to proliferative state. Protease-activated receptor 2 (PAR2) involvement in this phenotypic conversion remains unclear. We hypothesized that PAR2 controls VSM cell proliferation in phenotype-dependent manner and through specific protein kinases. METHODS: Rat clonal low (PLo; P3-P6) and high passage (PHi; P10-P15) VSM cells were established as respective models of quiescent and proliferative cells, based on reduced PKG-1 and VASP. Western blotting determined expression of cytoskeletal/contractile proteins, PAR2, and select protein kinases. DNA synthesis and cell proliferation were measured 24-72 h following PAR2 agonism (SLIGRL; 100 nM-10 µm) with/without PKA (PKI; 10 µm), MEK1/2 (PD98059; 10 µm), and PI3K (LY294002; 1 µm) blockade. RESULTS: PKG-1, VASP, SM22α, calponin, cofilin, and PAR2 were reduced in PHi versus PLo cells. Following PAR2 agonism, DNA synthesis and cell proliferation increased in PLo cells but decreased in PHi cells. Western analyses showed reduced PKA, MEK1/2, and PI3K in PHi versus PLo cells, and kinase blockade revealed PAR2 controls VSM cell proliferation through PKA/MEK1/2. DISCUSSION: Findings highlight PAR2 and PAR2-driven PKA/MEK1/2 in control of VSM cell growth and provide evidence for continued investigation of PAR2 in VSM pathology.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Receptor PAR-2 , Ratas , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Músculo Liso Vascular/metabolismo , Proliferación Celular , Fosfatidilinositol 3-Quinasas/metabolismo , ADN/metabolismo , Células Cultivadas
2.
Front Physiol ; 14: 1278632, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745235
3.
Front Physiol ; 14: 1136998, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693008

RESUMEN

Transition of arterial smooth muscle (ASM) from a quiescent, contractile state to a growth-promoting state is a hallmark of cardiovascular disease (CVD), a leading cause of death and disability in the United States and worldwide. While many individual signals have been identified as important mechanisms in this phenotypic conversion, the combined impact of the transcription factors Smad3 and FoxO3 in ASM growth is not known. The purpose of this study was to determine that a coordinated, phosphorylation-specific relationship exists between Smad3 and FoxO3 in the control of ASM cell growth. Using a rat in vivo arterial injury model and rat primary ASM cell lysates and fractions, validated low and high serum in vitro models of respective quiescent and growth states, and adenoviral (Ad-) gene delivery for overexpression (OE) of individual and combined Smad3 and/or FoxO3, we hypothesized that FoxO3 can moderate Smad3-induced ASM cell growth. Key findings revealed unique cellular distribution of Smad3 and FoxO3 under growth conditions, with induction of both nuclear and cytosolic Smad3 yet primarily cytosolic FoxO3; Ad-Smad3 OE leading to cytosolic and nuclear expression of phosphorylated and total Smad3, with almost complete reversal of each with Ad-FoxO3 co-infection in quiescent and growth conditions; Ad-FoxO3 OE leading to enhanced cytosolic expression of phosphorylated and total FoxO3, both reduced with Ad-Smad3 co-infection in quiescent and growth conditions; Ad-FoxO3 inducing expression and activity of the ubiquitin ligase MuRF-1, which was reversed with concomitant Ad-Smad3 OE; and combined Smad3/FoxO3 OE reversing both the pro-growth impact of singular Smad3 and the cytostatic impact of singular FoxO3. A primary takeaway from these observations is the capacity of FoxO3 to reverse growth-promoting effects of Smad3 in ASM cells. Additional findings lend support for reciprocal antagonism of Smad3 on FoxO3-induced cytostasis, and these effects are dependent upon discrete phosphorylation states and cellular localization and involve MuRF-1 in the control of ASM cell growth. Lastly, results showing capacity of FoxO3 to normalize Smad3-induced ASM cell growth largely support our hypothesis, and overall findings provide evidence for utility of Smad3 and/or FoxO3 as potential therapeutic targets against abnormal ASM growth in the context of CVD.

4.
Artículo en Inglés | MEDLINE | ID: mdl-35886147

RESUMEN

Although discrete maternal exercise and polyunsaturated fatty acid (PUFA) supplementation individually are beneficial for infant body composition, the effects of exercise and PUFA during pregnancy on infant body composition have not been studied. This study evaluated the body composition of infants born to women participating in a randomized control exercise intervention study. Participants were randomized to aerobic exercise (n = 25) or control (stretching and breathing) groups (n = 10). From 16 weeks of gestation until delivery, the groups met 3×/week. At 16 and 36 weeks of gestation, maternal blood was collected and analyzed for Docosahexaenoic Acid (DHA) and Eicosapentaenoic Acid (EPA). At 1 month postnatal, infant body composition was assessed via skinfolds (SFs) and circumferences. Data from 35 pregnant women and infants were analyzed via t-tests, correlations, and regression. In a per protocol analysis, infants born to aerobic exercisers exhibited lower SF thicknesses of triceps (p = 0.008), subscapular (p = 0.04), SF sum (p = 0.01), and body fat (BF) percentage (%) (p = 0.006) compared with controls. After controlling for 36-week DHA and EPA levels, exercise dose was determined to be a negative predictor for infant skinfolds of triceps (p = 0.001, r2 = 0.27), subscapular (p = 0.008, r2 = 0.19), SF sum (p = 0.001, r2 = 0.28), mid-upper arm circumference (p = 0.049, r2 = 0.11), and BF% (p = 0.001, r2 = 0.32). There were no significant findings for PUFAs and infant measures: during pregnancy, exercise dose, but not blood DHA or EPA levels, reduces infant adiposity.


Asunto(s)
Ácido Eicosapentaenoico , Ácidos Grasos Omega-3 , Composición Corporal , Suplementos Dietéticos , Ácidos Docosahexaenoicos , Ejercicio Físico , Ácidos Grasos Insaturados , Femenino , Humanos , Lactante , Embarazo
5.
Artículo en Inglés | MEDLINE | ID: mdl-35329235

RESUMEN

Exercise and polyunsaturated fatty acid (PUFA) supplementation independently improve lipid profiles. The influence of both exercise and PUFAs on lipids during pregnancy remains unknown. This study evaluated exercise, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) concentrations on lipids during pregnancy. Participants were randomized to aerobic exercise or control groups. From 16 weeks gestation until delivery, groups met 3x/week; exercisers performed moderate-intensity aerobic activity, controls performed low-intensity stretching and breathing. At 16 and 36 weeks' gestation, maternal blood was analyzed for lipids (total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TG)), DHA and EPA. In intent-to-treat analysis, the aerobic group (n = 20), relative to controls (n = 10), exhibited a higher HDL change across gestation (p = 0.03). In a per protocol analysis, the aerobic group, relative to controls, exhibited 21.2% lower TG at 36 weeks (p = 0.04). After controlling for 36-week DHA and EPA, exercise dose predicts 36 weeks' TG (F (1,36) = 6.977, p = 0.012, r2 = 0.16). Aerobic exercise normalizes late pregnancy TG. During pregnancy, exercise dose controls the rise in TG, therefore maintaining normal levels. DHA and EPA do not have measurable effects on lipids. Regardless of PUFA levels, exercise at recommended levels maintains appropriate TG levels in pregnant women. Normal TG levels are critical for pregnancy outcomes, and further studies are warranted to investigate this association in broader populations.


Asunto(s)
Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Ejercicio Físico , Femenino , Humanos , Lipoproteínas HDL , Embarazo , Triglicéridos
6.
Metabolism ; 108: 154257, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32370945

RESUMEN

BACKGROUND: Protein degradation is an energy-dependent process, requiring ATP at multiple steps. However, reports conflict as to the relationship between intracellular energetics and the rate of proteasome-mediated protein degradation. METHODS: To determine whether the concentration of the adenine nucleotide pool (ATP + ADP + AMP) affects protein degradation in muscle cells, we overexpressed an AMP degrading enzyme, AMP deaminase 3 (AMPD3), via adenovirus in C2C12 myotubes. RESULTS: Overexpression of AMPD3 resulted in a dose- and time-dependent reduction of total adenine nucleotides (ATP, ADP and AMP) without increasing the ADP/ATP or AMP/ATP ratios. In agreement, the reduction of total adenine nucleotide concentration did not result in increased Thr172 phosphorylation of AMP-activated protein kinase (AMPK), a common indicator of intracellular energetic state. Furthermore, LC3 protein accumulation and ULK1 (Ser 555) phosphorylation were not induced. However, overall protein degradation and ubiquitin-dependent proteolysis were slowed by overexpression of AMPD3, despite unchanged content of several proteasome subunit proteins and proteasome activity in vitro under standard conditions. CONCLUSIONS: Altogether, these findings indicate that a physiologically relevant decrease in ATP content, without a concomitant increase in ADP or AMP, is sufficient to decrease the rate of protein degradation and activity of the ubiquitin-proteasome system in muscle cells. This suggests that adenine nucleotide degrading enzymes, such as AMPD3, may be a viable target to control muscle protein degradation and perhaps muscle mass.


Asunto(s)
AMP Desaminasa/metabolismo , Adenosina Trifosfato/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Células Cultivadas , Ratones , Fibras Musculares Esqueléticas/metabolismo , Fosforilación/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Subunidades de Proteína/metabolismo , Proteolisis , Ubiquitina/metabolismo
7.
J Cardiovasc Dev Dis ; 5(1)2018 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-29367584

RESUMEN

Cardiovascular disease (CVD), including myocardial infarction (MI) and peripheral or coronary artery disease (PAD, CAD), remains the number one killer of individuals in the United States and worldwide, accounting for nearly 18 million (>30%) global deaths annually. Despite considerable basic science and clinical investigation aimed at identifying key etiologic components of and potential therapeutic targets for CVD, the number of individuals afflicted with these dreaded diseases continues to rise. Of the many biochemical, molecular, and cellular elements and processes characterized to date that have potential to control foundational facets of CVD, the multifaceted cyclic nucleotide pathways continue to be of primary basic science and clinical interest. Cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP) and their plethora of downstream protein kinase effectors serve ubiquitous roles not only in cardiovascular homeostasis but also in the pathogenesis of CVD. Already a major target for clinical pharmacotherapy for CVD as well as other pathologies, novel and potentially clinically appealing actions of cyclic nucleotides and their downstream targets are still being discovered. With this in mind, this review article focuses on our current state of knowledge of the cyclic nucleotide-driven serine (Ser)/threonine (Thr) protein kinases in CVD with particular emphasis on cyclic AMP-dependent protein kinase (PKA) and cyclic GMP-dependent protein kinase (PKG). Attention is given to the regulatory interactions of these kinases with inflammatory components including interleukin 6 signals, with G protein-coupled receptor and growth factor signals, and with growth and synthetic transcriptional platforms underlying CVD pathogenesis. This article concludes with a brief discussion of potential future directions and highlights the importance for continued basic science and clinical study of cyclic nucleotide-directed protein kinases as emerging and crucial controllers of cardiac and vascular disease pathologies.

8.
Curr Opin Pharmacol ; 33: 12-16, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28388507

RESUMEN

Many signaling factors have been identified over the years that serve as mechanistic foundations for the pathogenesis and/or maintenance of cardiovascular disease (CVD). Of these, cyclic nucleotide-driven protein kinases in vascular smooth muscle (VSM) are of essential importance. Comprised primarily of cyclic AMP-dependent and cyclic GMP-dependent protein kinases, these ubiquitous signaling molecules have capacity to operate through numerous downstream effectors including vasodilator-stimulated phosphoprotein (VASP) to control aberrant VSM growth elemental to CVD. As more information is gathered regarding genetic, biochemical, molecular and cellular makeup of CVD including VSM cyclic nucleotide-dependent protein kinases and VASP, advances will be made in precision medicine by identifying more precise therapeutic targets to enhance clinical decision making.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas Quinasas Reguladas por Nucleótidos Cíclicos/metabolismo , Proteínas de Microfilamentos/metabolismo , Músculo Liso Vascular/metabolismo , Fosfoproteínas/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Humanos , Transducción de Señal/fisiología
9.
Cytometry A ; 91(3): 270-280, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27984679

RESUMEN

Application of fluid shear stress to adherent cells dramatically influences their cytoskeletal makeup and differentially regulates their migratory phenotype. Because cytoskeletal rearrangements are necessary for cell motility and migration, preserving these adaptations under in vitro conditions and in the presence of fluid flow are physiologically essential. With this in mind, parallel plate flow chambers and microchannels are often used to conduct in vitro perfusion experiments. However, both of these systems currently lack capacity to accurately study cell migration in the same location where cells were perfused. The most common perfusion/migration assays involve cell perfusion followed by trypsinization which can compromise adaptive cytoskeletal geometry and lead to misleading phenotypic conclusions. The purpose of this study was to quantitatively highlight some limitations commonly found with currently used cell migration approaches and to introduce two new advances which use additive manufacturing (3D printing) or laser capture microdissection (LCM) technology. The residue-free 3D printed insert allows accurate cell seeding within defined areas, increases cell yield for downstream analyses, and more closely resembles the reported levels of fluid shear stress calculated with computational fluid dynamics as compared to other residue-free cell seeding techniques. The LCM approach uses an ultraviolet laser for "touchless technology" to rapidly and accurately introduce a custom-sized wound area in otherwise inaccessible perfusion microchannels. The wound area introduced by LCM elicits comparable migration characteristics compared to traditional pipette tip-induced injuries. When used in perfusion experiments, both of these newly characterized tools were effective in yielding similar results yet without the limitations of the traditional modalities. These innovative methods provide valuable tools for exploring mechanisms of clinically important aspects of cell migration fundamental to the pathogenesis of many flow-mediated disorders and are applicable to other perfusion-based models where migration is of central importance. © 2016 International Society for Advancement of Cytometry.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Movimiento Celular/efectos de los fármacos , Estrés Mecánico , Citoesqueleto/ultraestructura , Humanos , Perfusión , Tripsina/farmacología
10.
Cell Signal ; 28(9): 1364-1379, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27302407

RESUMEN

Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls. Intriguingly, FL-VASP/239D abrogated the stimulatory effects of FL-VASP/WT and FL-VASP/239A cells on PKG activity. In turn, pharmacologic blockade of PKG in the presence of BAY60 reversed the inhibitory effect of BAY60 on naïve ASM cell migration. Taken together, we demonstrate for the first time that BAY60 inhibits ASM cell migration through cGMP/PKG/VASP signaling yet through mechanisms independent of pVASP·S239 and that FL-VASP overexpression regulates PKG activity in rat ASM cells. These findings implicate BAY60 as a potential pharmacotherapeutic agent against aberrant ASM growth disorders such as CAD and also establish a unique mechanism through which VASP controls PKG activity.


Asunto(s)
Arterias/citología , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas de Microfilamentos/metabolismo , Miocitos del Músculo Liso/citología , Fosfoproteínas/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Actinas/metabolismo , Animales , Benzoatos/farmacología , Compuestos de Bifenilo/farmacología , Movimiento Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Hidrocarburos Fluorados/farmacología , Masculino , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/enzimología , Oxidación-Reducción , Fosforilación/efectos de los fármacos , Fosfoserina , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Remodelación Vascular/efectos de los fármacos
11.
Am J Physiol Heart Circ Physiol ; 309(8): H1251-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26276823

RESUMEN

Dysfunctional vascular growth is a major contributor to cardiovascular disease, the leading cause of morbidity and mortality worldwide. Growth factor-induced activation of vascular smooth muscle cells (VSMCs) results in a phenotypic switch from a quiescent, contractile state to a proliferative state foundational to vessel pathology. Transforming growth factor-ß (TGF-ß) is a multifunctional signaling protein capable of growth stimulation via Smad signaling. Although Smad signaling is well characterized in many tissues, its role in VSM growth disorders remains controversial. Recent data from our lab and others implicate the metabolic regulator AMP-activated protein kinase (AMPK) in VSM growth inhibition. We hypothesized that AMPK inhibits VSMC proliferation by reducing TGF-ß-mediated growth in a Smad-dependent fashion. Treatment of rat VSMCs with the AMPK agonist AICAR significantly decreased TGF-ß-mediated activation of synthetic Smad2 and Smad3 and increased inhibitory Smad7. Flow cytometry and automated cell counting revealed that AICAR reversed TGF-ß-mediated cell cycle progression at 24 h and elevated cell numbers at 48 h. TGF-ß/Smad signaling increased the G0/G1 inducers cyclin D1/cyclin-dependent kinase (CDK) 4 and cyclin E/CDK2; however, AICAR reversed these events while increasing cytostatic p21. The specific role of Smad3 in AMPK-mediated reversal of TGF-ß-induced growth was then explored using adenovirus-mediated Smad3 overexpression (Ad-Smad3). Ad-Smad3 cells increased cell cycle progression and cell numbers compared with Ad-GFP control cells, and these were restored to basal levels with concomitant AICAR treatment. These findings support a novel AMPK target in TGF-ß/Smad3 for VSMC growth control and support continued investigation of AMPK as a possible therapeutic target for reducing vascular growth disorders.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proliferación Celular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/enzimología , Aorta Torácica/patología , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Activación Enzimática , Activadores de Enzimas/farmacología , Masculino , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/patología , Fosforilación , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteína smad3/genética , Factores de Tiempo , Transfección
12.
PLoS One ; 8(8): e74116, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24023697

RESUMEN

Blood pressure increases with age, and dysfunction of the dopamine D3 receptor has been implicated in the pathogenesis of hypertension. To evaluate the role of the D3 receptor in aging-related hypertension, we assessed cardiac structure and function in differently aged (2 mo, 1 yr, 2 yr) wild type (WT) and young (2 mo) D3 receptor knockout mice (D3KO). In WT, systolic and diastolic blood pressures and rate-pressure product (RPP) significantly increased with age, while heart rate significantly decreased. Blood pressure values, heart rate and RPP of young D3KO were significantly elevated over age-matched WT, but similar to those of the 2 yr old WT. Echocardiography revealed that the functional measurements of ejection fraction and fractional shortening decreased significantly with age in WT and that they were significantly smaller in D3KO compared to young WT. Despite this functional change however, cardiac morphology remained similar between the age-matched WT and D3KO. Additional morphometric analyses confirmed an aging-related increase in left ventricle (LV) and myocyte cross-sectional areas in WT, but found no difference between age-matched young WT and D3KO. In contrast, interstitial fibrosis, which increased with age in WT, was significantly elevated in the D3KO over age-matched WT, and similar to 2 yr old WT. Western analyses of myocardial homogenates revealed significantly increased levels of pro- and mature collagen type I in young D3KO. Column zymography revealed that activities of myocardial MMP-2 and MMP-9 increased with age in WTs, but in D3KO, only MMP-9 activity was significantly increased over age-matched WTs. Our data provide evidence that the dopamine D3 receptor has a critical role in the emergence of aging-related cardiac fibrosis, remodeling, and dysfunction.


Asunto(s)
Envejecimiento/patología , Sistema Nervioso Autónomo/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Receptores de Dopamina D3/metabolismo , Animales , Sistema Nervioso Autónomo/diagnóstico por imagen , Sistema Nervioso Autónomo/metabolismo , Sistema Nervioso Autónomo/patología , Presión Sanguínea , Western Blotting , Peso Corporal , Ecocardiografía , Fibrosis/diagnóstico por imagen , Fibrosis/metabolismo , Fibrosis/patología , Fibrosis/fisiopatología , Frecuencia Cardíaca , Estimación de Kaplan-Meier , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Noqueados , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Receptores de Dopamina D3/deficiencia
13.
ISRN Minim Invasive Surg ; 20132013 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-23762781

RESUMEN

In cardiovascular research, translation of benchtop findings to the whole body environment is often critical in order to gain a more thorough and comprehensive clinical evaluation of the data with direct extrapolation to the human condition. In particular, developmental and/or pathophysiologic vascular growth studies often employ in vitro approaches such as cultured cells or tissue explant models in order to analyze specific cellular, molecular, genetic and/or biochemical signaling factors under pristine controlled conditions. However, validation of in vitro data in a whole body setting complete with neural, endocrine and other systemic contributions provides essential proof-of-concept from a clinical perspective. Several well-characterized experimental in vivo models exist that provide excellent proof-of-concept tools with which to examine vascular growth and remodeling in the whole body. This article will examine the rat carotid artery balloon injury model, the mouse carotid artery wire denudation injury model, and rat and mouse carotid artery ligation models with particular emphasis on minimally invasive surgical access to the site of intervention. Discussion will include key scientific and technical details as well as caveats, limitations, and considerations for practical use for each of these valuable experimental models.

14.
Am J Physiol Heart Circ Physiol ; 304(3): H369-81, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23203966

RESUMEN

Vascular smooth muscle cell (VSMC) activation promotes a synthetic phenotype that underlies many vessel growth disorders. In this regard it has been suggested that the metabolic sensor adenosine 5'-monophosphate-activated protein kinase (AMPK) has significant antigrowth and antimetastatic properties and may serve as a viable therapeutic target. In the current study we hypothesized that AMPK reduces neointima formation following balloon injury and that this occurs through reduction in VSMC proliferation and migration. Data reveal that local or systemic dosing with the AMPK agonist 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR) significantly increased AMPK activity in vivo and inhibited neointima formation in rat carotid arteries 2 wk after injury. In primary VSMCs, AICAR inhibited migration and induced cytostatic growth arrest through increased protein phosphatase 2A-mediated inhibition of mitosis-promoting cyclin B. AICAR also significantly enhanced AMPK-specific T278 phosphorylation of the actin anticapping vasodilator-activated serum phosphoprotein, increased G- to F-actin ratios and stress fiber formation, and abrogated PDGF-stimulated S397 autophosphorylation of focal adhesion kinase, promigratory cytoplasmic accumulation of paxillin, and extracellular matrix proteolysis by matrix metalloproteinase-9. Together, these results provide compelling evidence that AMPK serves to inhibit vascular smooth muscle migration and proliferation through regulation of cytoskeletal/focal adhesion/ECM stability, increasing our knowledge of this important metabolic regulator and providing support for its continued investigation in the treatment of vascular growth disorders.


Asunto(s)
Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/lesiones , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Actinas/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Aorta Torácica/citología , Aorta Torácica/efectos de los fármacos , Traumatismos de las Arterias Carótidas/patología , Adhesión Celular/fisiología , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citoesqueleto/metabolismo , Técnica del Anticuerpo Fluorescente , Hipoglucemiantes/farmacología , Inmunohistoquímica , Masculino , Metaloproteinasas de la Matriz/metabolismo , Neointima/patología , Ratas , Ratas Sprague-Dawley , Ribonucleótidos/farmacología
15.
Front Physiol ; 3: 409, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23112775

RESUMEN

Abnormal vascular smooth muscle (VSM) growth is central in the pathophysiology of vascular disease yet fully effective therapies to curb this growth are lacking. Recent findings from our lab and others support growth control of VSM by adenosine monophosphate (AMP)-based approaches including the metabolic sensor AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). Molecular crosstalk between AMPK and PKA has been previously suggested, yet the extent to which this occurs and its biological significance in VSM remain unclear. Considering their common AMP backbone and similar signaling characteristics, we hypothesized that crosstalk exists between AMPK and PKA in the regulation of VSM growth. Using rat primary VSM cells (VSMC), the AMPK agonist AICAR increased AMPK activity and phosphorylation of the catalytic Thr172 site on AMPK. Interestingly, AICAR also phosphorylated a suspected PKA-inhibitory Ser485 site on AMPK, and these cumulative events were reversed by the PKA inhibitor PKI suggesting possible PKA-mediated regulation of AMPK. AICAR also increased PKA activity in a reversible fashion. The cAMP stimulator forskolin increased PKA activity and completely ameliorated Ser/Thr protein phosphatase-2C activity, suggesting a potential mechanism of AMPK modulation by PKA since inhibition of PKA by PKI reduced AMPK activity. Functionally, AMPK inhibited serum-stimulated cell cycle progression and cellular proliferation; however, PKA failed to do so. Moreover, AMPK and PKA reduced PDGF-ß-stimulated VSMC migration. Collectively, these results show that AMPK is capable of reducing VSM growth in both anti-proliferative and anti-migratory fashion. Furthermore, these data suggest that AMPK may be modulated by PKA and that positive feedback may exist between these two systems. These findings reveal a discrete nexus between AMPK and PKA in VSM and provide basis for metabolically-directed targets in reducing pathologic VSM growth.

16.
Front Physiol ; 3: 220, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737133

RESUMEN

Connexin 43 (Cx43), the principal gap junction protein in vascular smooth muscle cells (VSMCs), regulates movement of ions and other signaling molecules through gap junction intercellular communication (GJIC) and plays important roles in maintaining normal vessel function; however, many of the signaling mechanisms controlling Cx43 in VSMCs are not clearly described. The goal of this study was to investigate mechanisms of Cx43 regulation with respect to VSMC proliferation. Treatment of rat primary VSMCs with the cAMP analog 8Br-cAMP, the soluble guanylate cyclase (sGC) stimulator BAY 41-2272 (BAY), or the Cx inducer diallyl disulfide (DADS) significantly reduced proliferation after 72 h compared with vehicle controls. Bromodeoxyuridine uptake revealed reduction (p < 0.05) in DNA synthesis after 6 h and flow cytometry showed reduced (40%) S-phase cell numbers after 16 h in DADS-treated cells compared with vehicle controls. Cx43 expression significantly increased after 270 min treatment with 8Br-cAMP, 8Br-cGMP, BAY or DADS. Inhibition of PKA, PKG or PKC reversed 8Br-cAMP-stimulated increases in Cx43 expression, whereas only PKG or PKC inhibition reversed 8Br-cGMP- and BAY-stimulated increases in total Cx43. Interestingly, stimulation of Cx43 expression by DADS was not dependent on PKA, PKG or PKC. Using fluorescence recovery after photobleaching, only 8Br-cAMP or DADS increased GJIC with 8Br-cAMP mediated by PKC and DADS mediated by PKG. Further, DADS significantly increased phosphorylation at MAPK-sensitive Serine (Ser)255 and Ser279, the cell cycle regulatory kinase-sensitive Ser262 and PKC-sensitive Ser368 after 30 min while 8Br-cAMP significantly increased phosphorylation only at Ser279 compared with controls. This study demonstrates that 8Br-cAMP- and DADS-enhanced GJIC rather than Cx43 expression and/or phosphorylation plays important roles in the regulation of VSMC proliferation and provides new insights into the growth-regulatory capacities of Cx43 in VSM.

17.
Front Pharmacol ; 3: 48, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22470341

RESUMEN

Bilirubin is a heme metabolite generated by the concerted action of the enzymes heme oxygenase and biliverdin reductase. Although long considered a toxic byproduct of heme catabolism, recent preclinical, and clinical studies indicate the bilirubin exerts beneficial effects in the circulation. In the present study, we determined whether local administration of bilirubin attenuates neointima formation following injury of rat carotid arteries. In addition, the ability of bilirubin to regulate the proliferation and migration of human arterial smooth muscle cells (SMCs) was investigated. Local perivascular administration of bilirubin immediately following balloon injury of rat carotid arteries significantly attenuated neointima formation. Bilirubin-mediated inhibition of neointimal thickening was associated with a significant decrease in ERK activity and cyclin D1 and A protein expression, and an increase in p21 and p53 protein expression in injured blood vessels. Treatment of human aortic SMCs with bilirubin inhibited proliferation and migration in a concentration-dependent manner without affecting cell viability. In addition, bilirubin resulted in a concentration-dependent increase in the percentage of cells in the G(0)/G(1) phase of the cell cycle and this was paralleled by a decrease in the fraction of cells in the S and G(2)M phases of the cell cycle. Finally, bilirubin had no effect on mitochondrial function and ATP content of vascular SMCs. In conclusion, these studies demonstrate that bilirubin inhibits neointima formation after arterial injury and this is associated with alterations in the expression of cell cycle regulatory proteins. Furthermore, bilirubin blocks proliferation and migration of human arterial SMCs and arrests SMCs in the G(0)/G(1) phase of the cell cycle. Bilirubin represents an attractive therapeutic agent in treating occlusive vascular disease.

18.
J Pharmacol Exp Ther ; 339(2): 394-402, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21825001

RESUMEN

Vascular smooth muscle (VSM) proliferation and migration are key components in vessel remodeling. Cyclic nucleotide signaling is protective and has long-served as a therapeutic target against undesired VSM growth. The present work analyzed the effects of the soluble guanylate cyclase (sGC) stimulator 3-(4-amino-5-cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine [BAY 41-2272 (BAY)] on VSM growth, and we hypothesize that BAY has the capacity to reduce proliferation and migration via cyclic nucleotide-driven kinase signaling. Perivascular BAY postballoon injury reduced neointimal growth by ∼ 40% compared with vehicle controls after 2 weeks. In VSM cells, BAY (10 µM) reduced proliferation by ∼ 40% after 72 h and migration by ∼ 40% after 6 h and ∼ 60% after 18 h without deleterious effects on cell viability. cGMP content peaked (248 ×) 20 min after BAY treatment and remained elevated (140 ×) through 60 min; however, BAY did not affect cAMP levels compared with controls. Conventional and In-Cell Western analyses showed increases in vasodilator-stimulated phosphoprotein (VASP) phosphorylation (pVASP) at serines 239 (3 ×) and 157 (2 ×), respective markers of cGMP- and cAMP-directed protein kinases (PKG and PKA, respectively). The PKG inhibitor YGRKKRRQRRRPPLRKKKKKH peptide (DT-2) completely reversed BAY-mediated increases in pVASPSer(239) and BAY-mediated inhibition of migration. In comparison, the PKA inhibitor peptide PKI further potentiated BAY-stimulated pVASPSer(157) and pVASPSer(239) and partially reversed the antiproliferative effects of BAY. This is the first report demonstrating the effectiveness of BAY in reducing neointimal growth with direct evidence for PKG-specific antimigratory and PKA-specific antiproliferative mechanisms. Conclusively, the sGC stimulator BAY reduces VSM growth through cGMP-dependent PKG and PKA processes, providing support for continued evaluation of its clinical utility.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Inhibidores de Crecimiento/farmacología , Músculo Liso Vascular/efectos de los fármacos , Pirazoles/farmacología , Piridinas/farmacología , Receptores Citoplasmáticos y Nucleares/agonistas , Administración Tópica , Animales , Traumatismos de las Arterias Carótidas/tratamiento farmacológico , Traumatismos de las Arterias Carótidas/patología , Ciclo Celular/efectos de los fármacos , Ensayos de Migración Celular , Supervivencia Celular/efectos de los fármacos , AMP Cíclico/análisis , GMP Cíclico/análisis , Inhibidores de Crecimiento/administración & dosificación , Inhibidores de Crecimiento/uso terapéutico , Guanilato Ciclasa , Masculino , Terapia Molecular Dirigida , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , Fosforilación/efectos de los fármacos , Pirazoles/administración & dosificación , Pirazoles/uso terapéutico , Piridinas/administración & dosificación , Piridinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Guanilil Ciclasa Soluble
19.
Int J Biomed Res ; 2(9): 499-507, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-24453460

RESUMEN

Efficient electron transfer and conversion of L-arginine to L-citrulline and nitric oxide (NO•) by neuronal nitric oxide synthase (nNOS) requires calmodulin (CaM) binding. The present study focused on electron transfer ability of resting state CaM-free nNOS in presence of dinitrobenzene isomers (DNBs). NADPH oxidation (NADPH ox ) and acetylated cytochrome-c reduction (AcCyt-cred ) catalyzed by nNOS and the CaM binding sequence-deficient nNOS reductase construct (nNOS-FP) were estimates of total electron flux and [Formula: see text] production, respectively. All the DNBs (o-, m-, p-) independently stimulated rates of NADPH ox by CaM-free nNOS and by nNOS-FP in isomer- and concentration-dependent manner. Blocking nNOS heme by imidazole or L-arginine did not affect CaM-free nNOS-catalyzed NADPH ox stimulated by DNBs. This stimulated electron flux by DNBs did not support NO• formation by CaM-free nNOS. The DNBs, like FeCN, extract electrons from both FMN and FAD of the nNOS reductase domain. All three DNBs greatly stimulated nNOS and nNOS-FP catalyzed AcCyt-cred that was significantly inhibited by SOD demonstrating [Formula: see text] formation. Thus, in presence of DNBs, resting-state CaM-deficient nNOS efficiently transfers electrons generating [Formula: see text], inferring that additional metabolic roles for nNOS exist that are not yet explored.

20.
J Cardiovasc Pharmacol Ther ; 14(2): 116-24, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19342499

RESUMEN

Guanosine-specific cyclic nucleotide signaling is suggested to serve protective actions in the vasculature; however, the influence of selective pharmacologic modulation of cyclic guanosine monophosphate- synthesizing soluble guanylate cyclase or cyclic guanosine monophosphate-degrading phosphodiesterase on vessel remodeling has not been thoroughly examined. In this study, rat carotid artery balloon injury was performed and the growth-modulating effects of the soluble guanylate cyclase stimulator YC-1 or the cyclic guanosine monophosphate-dependent phosphodiesterase-V inhibitor zaprinast were examined. YC-1 or zaprinast elevated vessel cyclic guanosine monophosphate content, reduced medial wall and neointimal cell proliferation, stimulated medial and neointimal cellular apoptosis, and markedly attenuated neointimal remodeling in comparable fashion. Interestingly, soluble guanylate cyclase inhibition by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one failed to noticeably alter neointimal growth, and concomitant zaprinast with YC-1 did not modify any parameter compared to individual treatments. These results provide novel in vivo evidence that YC-1 and zaprinast inhibit injury-induced vascular remodeling through antimitogenic and proapoptotic actions and may offer promising therapeutic approaches against vasoproliferative disorders.


Asunto(s)
Traumatismos de las Arterias Carótidas/tratamiento farmacológico , GMP Cíclico/metabolismo , Indazoles/farmacología , Purinonas/farmacología , Animales , Apoptosis/efectos de los fármacos , Traumatismos de las Arterias Carótidas/fisiopatología , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Activadores de Enzimas/farmacología , Guanilato Ciclasa/efectos de los fármacos , Guanilato Ciclasa/metabolismo , Masculino , Inhibidores de Fosfodiesterasa/farmacología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...