Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Reprod Biomed Online ; 48(4): 103625, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402675

RESUMEN

RESEARCH QUESTION: Can the addition of progesterone and neurotensin, molecular agents found in the female reproductive tract, after sperm washing increase the fertilization potential of human spermatozoa? DESIGN: (i) Cohort study of 24 men. Spermatozoa selected by swim-up were incubated in either progesterone or neurotensin (0.1-100 µM) for 1-4 h, and hyperactive motility and binding to hyaluronan (0.1-100 µM) were assessed. The effect of progesterone 10 µM on sperm function was assessed in a blinded manner, including: hyperactive motility, binding to hyaluronan, tyrosine phosphorylation, acrosome reaction and oxidative DNA damage. (i) Embryo safety testing [one-cell mouse embryo assay (MEA), endotoxin and sterility counts (n = 3)] in preclinical embryo models of IVF (murine and porcine, n = 7 each model) and a small preliminary human study (n = 4) of couples undergoing standard IVF with oocytes inseminated with spermatozoa ± 10 µM progesterone. RESULTS: Progesterone 10 µM increased sperm binding to hyaluronan, hyperactive motility and tyrosine phosphorylation (all P < 0.05). Neurotensin had no effect (P > 0.05). Progesterone 10 µM in human embryo culture media passed embryo safety testing (MEA, endotoxin concentration and sterility plate count). In preclinical models of IVF, the exposure of spermatozoa to progesterone 10 µM and oocytes to progesterone 1 µM was not detrimental, and increased the fertilization rate in mice and the blastocyst cell number in mice and pigs (all P ≤ 0.03). In humans, every transferred blastocyst that had been produced from spermatozoa exposed to progesterone resulted in a live birth. CONCLUSION: The addition of progesterone to sperm preparation media shows promise as an adjunct to current methods for increasing fertilization potential. Randomized controlled trials are required to determine the clinical utility of progesterone for improving IVF outcomes.


Asunto(s)
Infertilidad , Progesterona , Humanos , Masculino , Femenino , Animales , Ratones , Porcinos , Progesterona/farmacología , Progesterona/metabolismo , Fertilización In Vitro/métodos , Neurotensina/metabolismo , Neurotensina/farmacología , Ácido Hialurónico/farmacología , Estudios de Cohortes , Semen , Espermatozoides/metabolismo , Infertilidad/metabolismo , Tirosina/metabolismo , Endotoxinas/metabolismo , Endotoxinas/farmacología
2.
Hum Reprod Update ; 30(3): 243-261, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38237150

RESUMEN

BACKGROUND: The last decade has seen increased research on the relationship between diet and male fertility, but there are no clearly defined nutritional recommendations for men in the preconception period to support clinical fertility outcomes. OBJECTIVE AND RATIONALE: The purpose of this scoping review is to examine the extent and range of research undertaken to evaluate the effect(s) of diet in the preconception period on male clinical fertility and reproductive outcomes. SEARCH METHODS: Four electronic databases (MEDLINE and EMBASE via Ovid, CAB Direct, and CINAHL via EBSCO) were searched from inception to July 2023 for randomized controlled trials (RCTs) and observational studies (prospective/retrospective, case-control, and cross-sectional). Intervention studies in male participants or couples aiming to achieve dietary or nutritional change, or non-intervention studies examining dietary or nutritional components (whole diets, dietary patterns, food groups or individual foods) in the preconception period were included. Controls were defined as any comparison group for RCTs, and any/no comparison for observational studies. Primary outcomes of interest included the effect(s) of male preconception diet on clinical outcomes such as conception (natural or via ART), pregnancy rates and live birth rates. Secondary outcomes included time to conception and sperm parameters. OUTCOMES: A total of 37 studies were eligible, including one RCT and 36 observational studies (prospective, cross-sectional, and case-control studies; four studies in non-ART populations) published between 2008 and 2023. Eight reported clinical outcomes, 26 reported on secondary outcomes, and three reported on both. The RCT did not assess clinical outcomes but found that tomato juice may benefit sperm motility. In observational studies, some evidence suggested that increasing fish or reducing sugar-sweetened beverages, processed meat or total fat may improve fecundability. Evidence for other clinical outcomes, such as pregnancy rates or live birth rates, showed no relationship with cereals, soy and dairy, and inconsistent relationships with consuming red meat or a 'healthy diet' pattern. For improved sperm parameters, limited evidence supported increasing fish, fats/fatty acids, carbohydrates and dairy, and reducing processed meat, while the evidence for fruits, vegetables, cereals, legumes, eggs, red meat and protein was inconsistent. Healthy diet patterns in general were shown to improve sperm health. WIDER IMPLICATIONS: Specific dietary recommendations for improving male fertility are precluded by the lack of reporting on clinical pregnancy outcomes, heterogeneity of the available literature and the paucity of RCTs to determine causation or to rule out reverse causation. There may be some benefit from increasing fish, adopting a healthy dietary pattern, and reducing consumption of sugar-sweetened beverages and processed meat, but it is unclear whether these benefits extend beyond sperm parameters to improve clinical fertility. More studies exploring whole diets rather than singular foods or nutritional components in the context of male fertility are encouraged, particularly by means of RCTs where feasible. Further assessment of core fertility outcomes is warranted and requires careful planning in high-quality prospective studies and RCTs. These studies can lay the groundwork for targeted dietary guidelines and enhance the prospects of successful fertility outcomes for men in the preconception period. Systematic search of preconception diet suggests that increasing fish and reducing sugary drinks, processed meats and total fat may improve male fertility, while consuming healthy diets, fish, fats/fatty acids, carbohydrates and dairy and reducing processed meat can improve sperm health.


Asunto(s)
Dieta , Fertilidad , Humanos , Masculino , Embarazo , Femenino , Fertilidad/efectos de los fármacos , Atención Preconceptiva/métodos , Índice de Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...