Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(27): e2203820119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759660

RESUMEN

Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer with limited meaningful treatment options. NEPC lesions uniquely express delta-like ligand 3 (DLL3) on their cell surface. Taking advantage of DLL3 overexpression, we developed and evaluated lutetium-177 (177Lu)-labeled DLL3-targeting antibody SC16 (177Lu-DTPA-SC16) as a treatment for NEPC. SC16 was functionalized with DTPA-CHX-A" chelator and radiolabeled with 177Lu to produce 177Lu-DTPA-SC16. Specificity and selectivity of 177Lu-DTPA-SC16 were evaluated in vitro and in vivo using NCI-H660 (NEPC, DLL3-positive) and DU145 (adenocarcinoma, DLL3-negative) cells and xenografts. Dose-dependent treatment efficacy and specificity of 177Lu-DTPA-SC16 radionuclide therapy were evaluated in H660 and DU145 xenograft-bearing mice. Safety of the agent was assessed by monitoring hematologic parameters. 177Lu-DTPA-SC16 showed high tumor uptake and specificity in H660 xenografts, with minimal uptake in DU145 xenografts. At all three tested doses of 177Lu-DTPA-SC16 (4.63, 9.25, and 27.75 MBq/mouse), complete responses were observed in H660-bearing mice; 9.25 and 27.75 MBq/mouse doses were curative. Even the lowest tested dose proved curative in five (63%) of eight mice, and recurring tumors could be successfully re-treated at the same dose to achieve complete responses. In DU145 xenografts, 177Lu-DTPA-SC16 therapy did not inhibit tumor growth. Platelets and hematocrit transiently dropped, reaching nadir at 2 to 3 wk. This was out of range only in the highest-dose cohort and quickly recovered to normal range by week 4. Weight loss was observed only in the highest-dose cohort. Therefore, our data demonstrate that 177Lu-DTPA-SC16 is a potent and safe radioimmunotherapeutic agent for testing in humans with NEPC.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Carcinoma Neuroendocrino , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Neoplasias de la Próstata , Radioinmunoterapia , Animales , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/uso terapéutico , Carcinoma Neuroendocrino/radioterapia , Quelantes/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/inmunología , Ligandos , Lutecio , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Ácido Pentético/química , Neoplasias de la Próstata/radioterapia , Radioisótopos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Nat Commun ; 13(1): 2526, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534471

RESUMEN

Resistance mechanisms and heterogeneity in HER2-positive gastric cancers (GC) limit Trastuzumab benefit in 32% of patients, and other targeted therapies have failed in clinical trials. Using patient samples, patient-derived xenografts (PDXs), partially humanized biological models, and HER2-targeted imaging technologies we demonstrate the role of caveolin-1 (CAV1) as a complementary biomarker in GC selection for Trastuzumab therapy. In retrospective analyses of samples from patients enrolled on Trastuzumab trials, the CAV1-high profile associates with low membrane HER2 density and low patient survival. We show a negative correlation between CAV1 tumoral protein levels - a major protein of cholesterol-rich membrane domains - and Trastuzumab-drug conjugate TDM1 tumor uptake. Finally, CAV1 depletion using knockdown or pharmacologic approaches (statins) increases antibody drug efficacy in tumors with incomplete HER2 membranous reactivity. In support of these findings, background statin use in patients associates with enhanced antibody efficacy. Together, this work provides preclinical justification and clinical evidence that require prospective investigation of antibody drugs combined with statins to delay drug resistance in tumors.


Asunto(s)
Neoplasias de la Mama , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias Gástricas , Neoplasias de la Mama/tratamiento farmacológico , Caveolina 1/genética , Caveolina 1/metabolismo , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Estudios Prospectivos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Estudios Retrospectivos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Trastuzumab/farmacología , Trastuzumab/uso terapéutico
3.
Clin Cancer Res ; 28(7): 1391-1401, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35046060

RESUMEN

PURPOSE: Small cell lung cancer (SCLC) is an exceptionally lethal form of lung cancer with limited treatment options. Delta-like ligand 3 (DLL3) is an attractive therapeutic target as surface expression is almost exclusive to tumor cells. EXPERIMENTAL DESIGN: We radiolabeled the anti-DLL3 mAb SC16 with the therapeutic radioisotope, Lutetium-177. [177Lu]Lu-DTPA-CHX-A"-SC16 binds to DLL3 on SCLC cells and delivers targeted radiotherapy while minimizing radiation to healthy tissue. RESULTS: [177Lu]Lu-DTPA-CHX-A"-SC16 demonstrated high tumor uptake with DLL3-target specificity in tumor xenografts. Dosimetry analyses of biodistribution studies suggested that the blood and liver were most at risk for toxicity from treatment with high doses of [177Lu]Lu-DTPA-CHX-A"-SC16. In the radioresistant NCI-H82 model, survival studies showed that 500 µCi and 750 µCi doses of [177Lu]Lu-DTPA-CHX-A"-SC16 led to prolonged survival over controls, and 3 of the 8 mice that received high doses of [177Lu]Lu-DTPA-CHX-A"-SC16 had pathologically confirmed complete responses (CR). In the patient-derived xenograft model Lu149, all doses of [177Lu]Lu-DTPA-CHX-A"-SC16 markedly prolonged survival. At the 250 µCi and 500 µCi doses, 5 of 10 and 7 of 9 mice demonstrated pathologically confirmed CRs, respectively. Four of 10 mice that received 750 µCi of [177Lu]Lu-DTPA-CHX-A"-SC16 demonstrated petechiae severe enough to warrant euthanasia, but the remaining 6 mice demonstrated pathologically confirmed CRs. IHC on residual tissues from partial responses confirmed retained DLL3 expression. Hematologic toxicity was dose-dependent and transient, with full recovery within 4 weeks. Hepatotoxicity was not observed. CONCLUSIONS: Together, the compelling antitumor efficacy, pathologic CRs, and mild and transient toxicity profile demonstrate strong potential for clinical translation of [177Lu]Lu-DTPA-CHX-A"-SC16.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Animales , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ligandos , Neoplasias Pulmonares/radioterapia , Proteínas de la Membrana/genética , Ratones , Radioinmunoterapia , Carcinoma Pulmonar de Células Pequeñas/radioterapia , Distribución Tisular
4.
Org Biomol Chem ; 17(28): 6866-6871, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31268109

RESUMEN

The bifunctional ligand p-SCN-Bn-HOPO, which has four 1,2-hydroxypyridinone groups on a spermine backbone with an isothiocyanate linker, has been shown to be an efficient and stable chelator for Zr(iv) and, more importantly, the radioisotope 89Zr for use in radiolabeling antibodies for positron emission tomography (PET) imaging. Previous studies of 89Zr-HOPO-trastuzumab in mice showed low background, good tumor to organ contrast, and very low bone uptake which show p-SCN-Bn-HOPO to be an important next-generation bifunctional chelator for radioimmunoPET imaging with 89Zr. However, the reported synthesis of p-SCN-Bn-HOPO involves nine steps and multiple HPLC purifications with an overall yield of about 1.4%. Herein we report an improved and efficient synthesis of p-SCN-Bn-HOPO in four steps with 14.3% overall yield which will improve its availability for further biological studies and wider application in PET imaging. The new synthetic route also allows variation in linker length and chemistries which may be helpful in modifying in vivo clearance behaviors of future agents.


Asunto(s)
Quelantes/síntesis química , Piridonas/química , Espermina/química , Quelantes/química , Estructura Molecular , Tomografía de Emisión de Positrones
5.
Nano Lett ; 19(7): 4343-4354, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31244242

RESUMEN

Preclinical measurements of drug exposure to specific organs and tissues is normally performed by destructive methods. Tissue-specific measurements are important, especially for drugs with intractable dose-limiting toxicities, such as doxorubicin-mediated cardiotoxicity. We developed a method to rapidly quantify doxorubicin exposure to tissues within living organisms using an implantable optical nanosensor that can be interrogated noninvasively following surgical implantation. The near-infrared fluorescence of single-walled carbon nanotubes functionalized with DNA was found to respond to doxorubicin via a large and uniform red-shift. We found this to be common to DNA-intercalating agents, including anthracycline compounds such as doxorubicin. Doxorubicin was measured in buffer and serum, intracellularly, and from single nanotubes on a surface. Doxorubicin adsorption to the DNA-suspended nanotubes did not displace DNA but bound irreversibly. We incorporated the nanosensors into an implantable membrane which allowed cumulative detection of doxorubicin exposure in vivo. On implanting the devices into different compartments, such as subcutaneously and within the peritoneal cavity, we achieved real-time, minimally invasive detection of doxorubicin injected into the peritoneal cavity, as well as compartment-specific measurements. We measured doxorubicin translocation across the peritoneal membrane in vivo. Robust, minimally invasive pharmacokinetic measurements in vivo suggest the suitability of this technology for preclinical drug discovery applications.


Asunto(s)
ADN/química , Doxorrubicina , Monitoreo de Drogas , Fluorescencia , Nanotubos de Carbono/química , Animales , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Ratones , Ratones Desnudos
6.
Nucl Med Biol ; 71: 32-38, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31128476

RESUMEN

INTRODUCTION: Determination of the target-binding fraction (TBF) of radiopharmaceuticals using cell-based assays is prone to inconsistencies arising from several intrinsic and extrinsic factors. Here, we report a cell-free quantitative method of analysis to determine the TBF of radioligands. METHODS: Magnetic beads functionalized with Ni-NTA or streptavidin were incubated with 1 µg of histidine-tagged or biotinylated antigen of choice for 15 min, followed by incubating 1 ng of the radioligand for 30 min. The beads, supernatant and wash fractions were measured for radioactivity on a gamma counter. The TBF was determined by quantifying the percentage of activity associated with the magnetic beads. RESULTS: The described method works robustly with a variety of radioisotopes and class of molecules used as radioligands. The entire assay can be completed within 2 h. CONCLUSION: The described method yields results in a rapid and reliable manner whilst improving and extending the scope of previously described bead-based radioimmunoassays. ADVANCES IN KNOWLEDGE: Using a bead-based radioligand binding assay overcomes the limitations of traditional cell-based assays. The described method is applicable to antibody as well as non-antibody based radioligands and is independent of the effect of target antigen density on cells, the choice of radioisotope used for synthesis of the radioligand and the temperature at which the assay is performed. IMPLICATIONS FOR PATIENT CARE: The bead-based radioligand binding assay is significantly easier to perform and is ideally suited for adoption by the radiopharmacy as a quality control method of analysis to fulfill the criteria for release of radiopharmaceuticals in the clinic. The use of this assay is likely to ensure a more reliable validation of radiopharmaceutical quality and result in fewer failed doses, which could ultimately translate to an efficient release of radiopharmaceuticals for administration to patients in the clinic.


Asunto(s)
Bioensayo/métodos , Radiofármacos/metabolismo , Cinética , Ligandos , Control de Calidad , Radiofármacos/química , Estreptavidina/química , Estreptavidina/metabolismo
7.
Mol Pharm ; 16(5): 2259-2263, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30912951

RESUMEN

Pretargeted radioimmunotherapy (PRIT) based on the inverse electron demand Diels-Alder reaction has shown promise in murine models of disease, yet the radiation dosimetry of this approach must be optimized to make it a viable clinical option. To this end, we have leveraged two recent developments in pretargeted imaging-dendritic scaffolds and masking agents-to improve the dosimetric profile of a proof-of-concept PRIT system that is based on the huA33 antibody, a 177Lu-labeled tetrazine radioligand ([177Lu]Lu-DOTA-PEG7-Tz), and a mouse model of A33 antigen-expressing colorectal carcinoma. Pretargeting using an huA33 immunoconjugate bearing a trans-cyclooctene-decorated dendritic scaffold (sshuA33-DEN-TCO) produced significantly higher tumoral activity concentrations at 120 h post-injection (23.0 ± 2.2 %ID/g) than those achieved with an analogous, dendrimer-lacking immunoconjugate (12.7 ± 2.6 %ID/g). However, pretargeting using sshuA33-DEN-TCO also resulted in increased activity concentrations in the blood at the same time point (1.9 ± 0.4 %ID/g) compared to the dendrimer-lacking construct (0.7 ± 0.2 %ID/g), thereby curtailing improvements to the tumor-to-blood therapeutic ratio of the system. In order to circumvent this issue, a tetrazine-labeled, dextran-based masking agent (Tz-DP) was injected prior to the radioligand to prevent the ligation between [177Lu]Lu-DOTA-PEG7-Tz and circulating immunoconjugate. This approach dramatically decreased the absorbed dose to the blood but also attenuated the absorbed dose to the tumor and increased the absorbed dose to the lungs. Ultimately, these data suggest that dendritic scaffolds and masking agents could be used to improve the dosimetry of PRIT, but the combination of these technologies will require extensive optimization.


Asunto(s)
Neoplasias Colorrectales/terapia , Radioinmunoterapia/métodos , Animales , Anticuerpos/inmunología , Línea Celular Tumoral , Estudios de Cohortes , Neoplasias Colorrectales/patología , Medios de Contraste/química , Reacción de Cicloadición/métodos , Ciclooctanos/química , Dendrímeros/química , Modelos Animales de Enfermedad , Femenino , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Inmunoconjugados/uso terapéutico , Lutecio/química , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Desnudos , Radioisótopos/química , Radiometría/métodos , Radiofármacos/uso terapéutico , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Bioconjug Chem ; 29(2): 538-545, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29378403

RESUMEN

Pretargeting strategies have gained popularity for the in vivo imaging and therapy of cancer by combining antibodies with small molecule radioligands. In vivo recombination of both moieties can be achieved using the bioorthogonal inverse electron demand Diels-Alder (IEDDA) chemistry between tetrazine (Tz) and trans-cyclooctene (TCO). An issue that arises with pretargeting strategies is that while part of the antibody dose accumulates at antigen-expressing tumor tissue, there is a significant portion of the injected antibody that remains in circulation, causing a reduction in target-to-background ratios. Herein, we report the development of a novel TCO scavenger, the masking agent DP-Tz. DP-Tz is based on Tz-modified dextran polymers (DP, MW = 0.5-2 MDa). Large dextran polymers were reported to exhibit low penetration of tumor vasculature and appeared nontoxic, nonimmunogenic, and easily modifiable. Our newly developed masking agent deactivates the remaining TCO-moieties on the circulating mAbs yet does not impact the tumor uptake of the Tz-radioligand. In pretargeting studies utilizing a 68Ga-labeled tetrazine radioligand ([68Ga]Ga-NOTA-PEG11-tetrazine), DP-Tz constructs (Tz/DP ratios of 62-254) significantly increased TTB ratios from 0.8 ± 0.3 (control cohorts) to up to 5.8 ± 2.3 at 2 h postinjection. Tumor tissue delineation in PET imaging experiments employing DP-Tz is significantly increased compared to control. Uptake values of other significant organs, such as heart, lungs, pancreas, and stomach, were decreased on average by 2-fold when using DP-Tz. Overall, pretargeting experiments utilizing DP-Tz showed significantly improved tumor delineation, enhanced PET image quality, and reduced uptake in vital organs. We believe that this new masking agent is a powerful new addition to the IEDDA-based pretargeting tool box and, due to its properties, an excellent candidate for clinical translation.


Asunto(s)
Anticuerpos Monoclonales/química , Ciclooctanos/análogos & derivados , Dextranos/química , Inmunoconjugados/química , Polímeros/química , Radiofármacos/química , Animales , Anticuerpos Monoclonales/farmacocinética , Reacción de Cicloadición , Ciclooctanos/farmacocinética , Dextranos/farmacocinética , Inmunoconjugados/farmacocinética , Ratones Desnudos , Polímeros/farmacocinética , Radiofármacos/farmacocinética , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...